Skip to main content
Log in

Simultaneous heat and moisture transport in porous building materials: evaluation of nonisothermal moisture transport properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper presents a mathematical model for calculating the nonisothermal moisture transfer in porous building materials. The simultaneous heat and moisture transfer problem was modeled. Vapor content and temperature were chosen as principal driving potentials. The coupled equations were solved by a numerical method. An experimental methodology for determining the temperature gradient coefficient for building materials was also proposed. Both the moisture diffusion coefficient and the temperature gradient coefficient for building material were experimentally evaluated. Using the measured moisture transport coefficients, the temperature and vapor content distribution inside building materials were predicted by the new model. The results were compared with experimental data. A good agreement was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C m :

Specific moisture (m3 kg−1)

C p :

Specific heat (dry material) (J kg−1 K−1)

D T :

Thermal diffusion coefficient due to the temperature gradient (kg m−1 K−1 s−1)

h lv :

Heat of phase-change (J kg−1)

j :

Moisture flow (kg m−2 s−1)

k p :

Permeability (m2)

l :

Thickness of the specimen (m)

M w :

Molar weight of water (g mol−1)

P w :

Pore water pressure (Pa)

R :

Gas constant (J K−1 mol−1)

s :

Laplace transformation parameter

t :

Time (s)

T :

Temperature (K)

v :

Vapor content (kg m−3)

v s :

Vapor content at saturation (kg m−3)

α:

Convective heat transfer coefficient (W m−2 K−1)

β:

Convective moisture transfer coefficient (m s−1)

γ:

Heat of absorption or desorption (kJ kg−1)

ɛ:

Thermogradient coefficient (kg m−3 K−1)

λ:

Thermal conductivity (W m−1 K−1)

ρ:

Density of the materials (dry condition) (kg m−3)

ρw :

Density of water (kg m−3)

φ:

Transformation function

σ:

Phase-change criterion

η:

Viscosity (kg m−1 s−1)

δ:

Moisture diffusion coefficient (m2 s−1)

δv :

Vapor flow coefficient (m2 s−1)

b:

Initial condition

i:

Isothermal case

l:

Liquid

t:

Nonisothermal case

v:

Vapor

References

  1. Luikov AW (1966) Heat and mass transfer in capillary-porous bodies. Pergamon Press, Oxford

    Book  Google Scholar 

  2. Philip JR, De Vries DA (1957) Trans Am Geophys Union 38(2):222

    Article  Google Scholar 

  3. Pedersen CR (1992) Build Environ 3:387. doi:https://doi.org/10.1016/0360-1323(92)90038-Q

    Article  Google Scholar 

  4. Künzel HM (1995) Simultaneous heat and moisture transport in building components: one- and two-dimensional calculation using simple parameters. IRB Verlag, Stuttgart

    Google Scholar 

  5. Milly PCD (1980) The coupled transport of water and heat in a vertical soil column under atmospheric excitation. Ph.D. Thesis, Massachusetts Institute of Technology, Massachusetts

  6. Janssen H, Carmeliet J, Hens H (2002) J Therm Envelope Build Sci 25(4):275

    Article  Google Scholar 

  7. Crausse P (1983) Etude fondamentale des transfers couplés de chaleur et d’humidité en milieu poreux non saturé. Dissertation, Institut National Polytechnique de Toulouse

  8. Häupl P, Stopp H, Strangfeld P (1988) Bauzeitung 42(3):113

    Google Scholar 

  9. Kari B, Perrin B, Foures JC (1992) Modélisation macroscopique des transferts de chaleur et d’humidité dans des matériaux du bâtiment. Manuskript zur Veröffentlichung in RILEM, Université de Toulouse

  10. Da Cunha Neto J, Daian JF (1991) Experimental analysis of moisture transport in consolidate porous media under temperature gradient. International seminar on heat and mass transfer, Dubrovnik

    Google Scholar 

  11. Mikhailov MD, Ozisik MN (1984) Unified analysis and solutions of heat and mass diffusion. Wiley, New York

    Google Scholar 

  12. Qin M, Belarbi R, Aït-Mokhtar A, Seigneurin A (2006) Int Commun Heat Mass Transfer 33(1):39. doi:https://doi.org/10.1016/j.icheatmasstransfer.2005.08.001

    Article  CAS  Google Scholar 

  13. Nilsson L-O (2004) Moisture transport in cementitious materials – theory and some experimental results. In: Knud Højgaard Conference on Advanced Cement-Based Materials – Research and Teaching, Technical University of Denmark

  14. Künzel HM (1994) One and two-dimensional calculation of the simultaneous heat and moisture transport in building components, using simple parameters. Ph.D. thesis, Frauenhofer Institute for Building Physics

  15. Tao WQ (1988) Numerical heat transfer (in Chinese). Xian Jiao Tong University Press, Shanxi

    Google Scholar 

  16. Qin M (2007) Study of the hygrothermal transfer phenomenon in building envelopes. Ph.D. thesis, University of La Rochelle, France

  17. Janz M (2000) Moisture transport and fixation in porous materials at high moisture levels. Ph.D. thesis, Lund University, Sweden

  18. Johansson P (2005) Water absorption in two-layer masonry systems. Ph.D. thesis, Lund University, Sweden

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menghao Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, M., Belarbi, R., Aït-Mokhtar, A. et al. Simultaneous heat and moisture transport in porous building materials: evaluation of nonisothermal moisture transport properties. J Mater Sci 43, 3655–3663 (2008). https://doi.org/10.1007/s10853-008-2584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2584-3

Keywords

Navigation