Skip to main content
Log in

Species variation in PrPSc protofibril models

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The misfolding and aggregation of the prion protein (PrP) is the primary cause of a group of infectious neurodegenerative diseases including Creutzfeldt-Jacob disease in humans and Bovine Spongiform Encephalopathy in cows. A single disease can exhibit different infectious strains distinguishable by incubation time and morphology or distribution of the aggregates. Infected brain tissue from one species can be used to infect other species, but with different efficiencies, suggesting a spectrum of species compatibility. If PrP is, as widely believed, the sole component of infection, then the species and strain differences must be accounted for by the structure of the aggregates, likely influenced by each species’ PrP sequence. As there are no high-resolution data exploring this hypothesis, we performed molecular dynamics simulations of PrP for human, bovine, hamster, and D147N mutant hamster sequences at low pH to induce misfolding of the protein. We selected representative converted structures from each of the four sequences and, with the guidance of experimental data, constructed models of the infectious aggregates. Both hamster monomers showed high flexibility during conversion, suggesting hamster may more easily adopt altered conformations, which in turn may explain why it is more easily infected by some other species. Human and bovine aggregates were similar, with monomers docking in P31 symmetry to form a left-handed spiral. In contrast, hamster aggregates formed a P31 right-handed spiral. We detail the differences in the converted monomers that give rise to this difference and show that our results compare favorably with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fornai F, Ferrucci M, Gesi M, Bandettini di Poggio A, Giorgi FS, Biagioni F, Paparelli A (2006) Brain Res Bull 69:95

    Article  CAS  Google Scholar 

  2. Mead S (2006) Eur J Hum Genet 14:273

    Article  CAS  Google Scholar 

  3. Griffith JS (1967) Nature 215:1043

    Article  CAS  Google Scholar 

  4. Bolton DC, McKinley MP, Prusiner SB (1982) Science 218:1309

    Article  CAS  Google Scholar 

  5. Walmsley AR, Zeng F, Hooper NM (2003) J Biol Chem 278:37241

    Article  CAS  Google Scholar 

  6. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794

    Article  CAS  Google Scholar 

  7. Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, de Quervain DJ (2005) Hum Mol Genet 14:2241

    Article  CAS  Google Scholar 

  8. Lasmezas CI (2003) Br Med Bull 66:61

    Article  CAS  Google Scholar 

  9. Sikorska B (2004) Folia Neuropathol 42(Suppl B):89

    Google Scholar 

  10. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390:684

    Article  CAS  Google Scholar 

  11. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Cell 73:1339

    Article  CAS  Google Scholar 

  12. Campana V, Sarnataro D, Zurzolo C (2005) Trends Cell Biol 15:102

    Article  CAS  Google Scholar 

  13. James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Proc Natl Acad Sci USA 94:10086

    Article  CAS  Google Scholar 

  14. Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) Proc Natl Acad Sci USA 97:8334

    Article  CAS  Google Scholar 

  15. Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) Proc Natl Acad Sci USA 97:145

    Article  CAS  Google Scholar 

  16. Weissmann C (2005) Cell 122:165

    Article  CAS  Google Scholar 

  17. Caughey B, Lansbury PT (2003) Annu Rev Neurosci 26:267

    Article  CAS  Google Scholar 

  18. Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) J Biol Chem 277:21140

    Article  CAS  Google Scholar 

  19. Eghiaian F, Daubenfeld T, Quenet Y, van Audenhaege M, Bouin AP, van der Rest G, Grosclaude J, Rezaei H (2007) Proc Natl Acad Sci USA 104:7414

    Article  CAS  Google Scholar 

  20. Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Proc Natl Acad Sci USA 99:3563

    Article  CAS  Google Scholar 

  21. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Biochemistry 30:7672

    Article  CAS  Google Scholar 

  22. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB (1993) Proc Natl Acad Sci USA 90:1

    Article  CAS  Google Scholar 

  23. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE et al (1993) Proc Natl Acad Sci USA 90:10962

    Article  CAS  Google Scholar 

  24. Jackson GS, Hill AF, Joseph C, Hosszu L, Power A, Waltho JP, Clarke AR, Collinge J (1999) Biochim Biophys Acta 1431:1

    Article  CAS  Google Scholar 

  25. Nguyen JT, Inouye H, Baldwin MA, Fletterick RJ, Cohen FE, Prusiner SB, Kirschner DA (1995) J Mol Biol 252:412

    Article  CAS  Google Scholar 

  26. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Nature 447:453

    Article  CAS  Google Scholar 

  27. Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV (2006) J Mol Biol 358:580

    Article  CAS  Google Scholar 

  28. Zhang S (2003) Nat Biotechnol 21:1171

    Article  CAS  Google Scholar 

  29. Waterhouse SH, Gerrard JA (2004) Aust J Chem 57:519

    Article  CAS  Google Scholar 

  30. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Proc Natl Acad Sci USA 100:4527

    Article  CAS  Google Scholar 

  31. Brown P, Rau EH, Johnson BK, Bacote AE, Gibbs CJ Jr, Gajdusek DC (2000) Proc Natl Acad Sci USA 97:3418

    CAS  Google Scholar 

  32. Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Proc Natl Acad Sci USA 103:15806

    Article  CAS  Google Scholar 

  33. Bruce ME (2003) Br Med Bull 66:99

    Article  CAS  Google Scholar 

  34. DeMarco ML, Daggett V (2004) Proc Natl Acad Sci USA 101:2293

    Article  CAS  Google Scholar 

  35. DeMarco ML, Daggett V (2005) C R Biol 328:847

    Article  CAS  Google Scholar 

  36. DeMarco ML, Silveira J, Caughey B, Daggett V (2006) Biochemistry 45:15573

    Article  CAS  Google Scholar 

  37. Beck DAC, Alonso DOV, Daggett V (2000–2008) In lucem molecular mechanics. University of Washington, Seattle, WA

  38. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Comput Phys Commun 91:215

    Article  CAS  Google Scholar 

  39. Levitt M, Hirshberg M, Sharon R, Laidig KE, Daggett V (1997) J Phys Chem B 101:5051

    Article  CAS  Google Scholar 

  40. DeLano WL (2002) 0.99rc6 ed. DeLano Scientific, San Carlos, CA, USA

  41. Kabsch W, Sander C (1983) Biopolymers 22:2577

    Article  CAS  Google Scholar 

  42. Daggett V (2006) Acc Chem Res 39:594

    Article  CAS  Google Scholar 

  43. I. Wolfram Research (2005) Mathematica, 5.2 ed. Wolfram Research, Inc., Champaign, IL

  44. T.P. Foundation (2006) 5.8.8 ed. The Perl Foundation

  45. R.D.C. Team. R Foundation for Statistical Computing, Vienna Austria3-900051-07-0, 2005

  46. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673

    Article  CAS  Google Scholar 

  47. Kundu B, Maiti NR, Jones EM, Surewicz KA, Vanik DL, Surewicz WK (2003) Proc Natl Acad Sci USA 100:12069

    Article  CAS  Google Scholar 

  48. Vanik DL, Surewicz KA, Surewicz WK (2004) Mol Cell 14:139

    Article  CAS  Google Scholar 

  49. DeMarco ML, Daggett V (2007) Biochem 46:3045

    Article  CAS  Google Scholar 

  50. Jones EM, Surewicz WK (2005) Cell 121:63

    Article  CAS  Google Scholar 

  51. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr, Caughey B (1995) Proc Natl Acad Sci USA 92:3923

    Article  CAS  Google Scholar 

  52. Kimberlin RH, Marsh RF (1975) J Infect Dis 131:97

    Article  CAS  Google Scholar 

  53. Marsh RF, Kimberlin RH (1975) J Infect Dis 131:104

    Article  CAS  Google Scholar 

  54. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ et al (1989) Cell 59:847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Daggett.

Additional information

This paper is part of the special Journal of Materials Science issue Nano- and micromechanical properties of hierarchical biological materials: Linking mechanics, chemistry and biology; Guest Editor: Markus J. Buehler that appeared in Journal of Materials Science volume 42, issue 21, November 2007. This paper was delayed for nonscientific reasons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scouras, A.D., Daggett, V. Species variation in PrPSc protofibril models. J Mater Sci 43, 3625–3637 (2008). https://doi.org/10.1007/s10853-008-2578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2578-1

Keywords

Navigation