Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3612–3617 | Cite as

Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment

  • R. K. SidhuEmail author
  • O. A. Ojo
  • M. C. Chaturvedi
Article

Abstract

The microstructure of directionally solidified Rene 80 (DS Rene 80) superalloy in the standard solution heat treated condition was examined. Sub-solidus incipient melting was observed, which was found to be caused by the liquation of terminal solidification reaction products present in front of the γ–γ′ eutectic in the as-cast alloy. Based on the differential scanning calorimetry (DSC) measurements, and microstructural examination of heat-treated and water-quenched specimens, sub-solidus incipient melting in the alloy is likely to occur below 1,160 °C, and this is a key factor to be considered in the development of a suitable solution heat treatment scheme for DS Rene 80.

Keywords

Rene Solution Heat Treatment Interdendritic Region Ni3Ti Terminal Solidification 

Notes

Acknowledgements

The authors would like to thank NSERC Canada and the consortium of Manitoba aerospace industries for financial support.

References

  1. 1.
    Ross EW (1971) Metal Prog 99:93Google Scholar
  2. 2.
    Raguet M, Antolovich SD, Payne RK (1984) Superalloys. In: Gell M et al (eds) Proceedings of the 5th international symposium on superalloys 1984, Seven Springs, PA, USA, The Metallurgical Society, p 231Google Scholar
  3. 3.
    Nakagawa YG, Ohtomo A, Saiga Y (1976) Trans Jpn Inst Met 17:323CrossRefGoogle Scholar
  4. 4.
    Nazmy M (1993) Proceedings of the conference on critical issues in the development of high temperature structural materials, March 7–14, Kona, HI, USA, p 321Google Scholar
  5. 5.
    Zheng Y, Cai Y, Wang L (1983) Acta Met Sinica 19:A190Google Scholar
  6. 6.
    Ojo OA, Richards NL, Chaturvedi MC (2004) J Mater Sci Lett 39:7401CrossRefGoogle Scholar
  7. 7.
    Baldan A (1989) Zeitschrift fur Metallkunde 80:635Google Scholar
  8. 8.
    Zeisler-Mashl KL, Pletka BJ (1992) Superalloys. In: Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Proceedings of the 7th international symposium on superalloys, Seven Springs, PA, USA, The Minerals, Metals & Materials Society, p 175Google Scholar
  9. 9.
    Seo SM, Kim IS, Lee JH, Jo CY, Miyahara H, Ogi K (2007) Met Mater Trans 38A:883. doi: https://doi.org/10.1007/s11661–007-9090-0
  10. 10.
    Boesch WJ, Canada HB (1968) J Metals 20:46Google Scholar
  11. 11.
    Collins HE (1974) Metall Trans 5A:189Google Scholar
  12. 12.
    Safari J, Nategh S (2006) J Mater Processing Technol 176:240. doi: https://doi.org/10.1016/j.jmatprotec.2006.03.165 CrossRefGoogle Scholar
  13. 13.
    Sponseller DL (1996) Superalloys. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) Proceedings of the 8th international symposium on superalloys, Seven Springs, PA, USA, The Minerals, Metals & Materials Society, p 259Google Scholar
  14. 14.
    Zhu Y, Zhang S, Xu L, Bi J, Hu Z, Shi C (1998) In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Proceedings of the 6th international symposium on superalloys, Seven Springs, PA, USA, 1988, The Metallurgical Society, p 703Google Scholar
  15. 15.
    Romig Jr D, Lippold JC, Cieslak ML (1988) Metall Trans 19A:35CrossRefGoogle Scholar
  16. 16.
    Owczarski WA, Duvall DS, Sullivan CP (1966) Weld J 44:145Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations