Skip to main content
Log in

Optical and structural characteristics of Y2O3 thin films synthesized from yttrium acetylacetonate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Yttrium oxide thin films are deposited on silicon substrates using the ultrasonic spray pyrolysis technique from the thermal decomposition of a β-diketonate, yttrium acetylacetonate (Y(acac)3). The decomposition of Y(acac)3 was studied by thermogravimetry, differential scanning calorimetry, mass spectrometry, and infrared spectroscopy. It was found that a β-diketone ligand is lost during the initial steps of decomposition of the Y(acac)3. The rest of the complex is then dissociated or degraded partially until Y2O3 is obtained in the final step with the presence of carbon related residues. Then the Y(acac)3 was used to synthesize Y2O3 thin films using the spray pyrolysis technique. The films were deposited on silicon substrates at temperatures in the range of 400–550 °C. The films were characterized by ellipsometry, infrared spectroscopy, atomic force microscopy, and X-ray diffraction. The films presented a low surface roughness with an index of refraction close to 1.8. The crystalline structure of the films depended on the substrate temperature; films deposited at 400 °C were mainly amorphous, but higher deposition temperatures (450–550 °C), resulted in polycrystalline with a cubic crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. García-Hipólito M, Alvarez Fregoso O, Martínez E, Falcony C, Aguilar Frutis MA (2002) Opt Mater 20:113

    Article  Google Scholar 

  2. Duparre A, Welsch E, Walther HG, Kaiser N, Mueller H, Hacker E, Latuh H, Meyer J, Weissbrodt P (1994) Thin Solid Film 250:1

    Article  Google Scholar 

  3. Choi SC, Cho MH, Whang SW, Kang SB, Lee SI (1997) Appl Phys Lett 71:903

    Article  CAS  Google Scholar 

  4. Zhang S, Xiao R (1998) J Appl Phys 83:3842

    Article  CAS  Google Scholar 

  5. Ivanic R, Rehacek V, Novotny I, Breternitz V, Spiess L, Knedlik CH, Tvarozek V (2001) Vacuum 6:229

    Article  Google Scholar 

  6. Lou L, Zhang W, Brioude A, Le Luyer C, Mugnier J (2001) Opt Mater 18:331

    Article  CAS  Google Scholar 

  7. Robertson J (2006) Rep Prog Phys 69:334

    Article  Google Scholar 

  8. Aguilar-Frutis M, García M, Falcony C (1998) Appl Phys Lett 72(14):1700

    Article  CAS  Google Scholar 

  9. Alarcón-Flores G, Aguilar-Frutis M, Falcony C, García Hipólito M, Araiza JJ, Herrera-Suárez YHJ (2006) J Vac Sci Technol B 24(4):1875

    Article  Google Scholar 

  10. Blandenet G, Court M, Lagarde Y (1981) Thin Solid Film 77:81

    Article  CAS  Google Scholar 

  11. Wang S-Y, Lu Z-H (2002) Mater Chem Phys 78:542

    Article  Google Scholar 

  12. Gurvitch M, Manchanda L, Gibson JM (1987) Appl Phys Lett 51(12):919

    Article  CAS  Google Scholar 

  13. Swamy V, Dubrovinskaya NA, Dubrovinsky LS (1999) J Mater Res 14(2):456

    Article  CAS  Google Scholar 

  14. Araiza JJ, Aguilar-Frutis MA, Falcony C (2001) J Vac Sci Technol B 19(6):2206

    Article  CAS  Google Scholar 

  15. Ivanic R, Rehacek V, Novotny I, Breternitz V, Spiess L, Knedlik CH, Tvarozek V (2001) Vacuum 6:229

    Article  Google Scholar 

  16. Gaboriaud RJ, Paumier F, Paillaoux F, Guerin P (2004) Mater Sci Eng B 109:34

    Article  Google Scholar 

  17. Hao J, Studenikin SA, Cocivera M (2001) J Lumin 93:313

    Article  CAS  Google Scholar 

  18. Fountain GG, Rudder RA, Hattangady SV, Markunas RJ (1988) J Appl Phys 63:4744

    Article  CAS  Google Scholar 

  19. Stryckmans O, Segato T, Duvigneaud PH (1996) Thin Solid Films 283(1):7

    Google Scholar 

  20. Mehrotra RC, Bohra R, Gaur DP (1978) Metal β diketonates and allied derivates. Academic Press Inc., London, p 58

    Google Scholar 

  21. Mclafferty F, Turecer F (1993) Interpretation of mass spectra. University Science Books, USA, p 52

    Google Scholar 

  22. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley and Sons, USA, p 259

    Google Scholar 

  23. Guo H, Zhang W, Lou L, Brioude A, Mugnier J (2004) Thin Solid Films 458:274

    Article  CAS  Google Scholar 

  24. Adams AC (1983) Solid State Technol 26:135

    CAS  Google Scholar 

  25. Niu D, Ashcraft RW, Parsons GN (2002) Appl Phys Lett 80(19):3575

    Article  CAS  Google Scholar 

  26. Durand C, Dubourdieu C, Vallee C, Loup V, Bonvalot M, Joubert O, Roussel H, Renault O (2004) J Appl Phys 96(3):1719

    Article  CAS  Google Scholar 

  27. Horng RH, Wuu DS, Yu JW, Kung CY (1996) Thin Solid Films 289:234

    Article  CAS  Google Scholar 

  28. Araiza JJ, Cardenas M, Falcony C, Mendez Garcia VM, Lopez M, Contreras-Puente G (1998) J Vac Sci Technol A16:3305

    Article  Google Scholar 

  29. Cullity BD (1954) Elements of X-ray diffraction. Addison-Wesley, Publishing Company Inc., p 261

Download references

Acknowledgements

The authors would like to thank warmly to CONACyT-México and to CGPI-IPN for the financial support through the scientific research projects (Grant Nos. 2005815, 20040278). The technical assistance of B. Esquivel, R. J. Fregoso, M. Guerrero, and A.B. Soto is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alarcón-Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón-Flores, G., Aguilar-Frutis, M., García-Hipolito, M. et al. Optical and structural characteristics of Y2O3 thin films synthesized from yttrium acetylacetonate. J Mater Sci 43, 3582–3588 (2008). https://doi.org/10.1007/s10853-008-2566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2566-5

Keywords

Navigation