Skip to main content
Log in

Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the variation of magnetoelectric (ME) coefficient as a function of the piezoelectric grain size in the composite system of 0.8 Pb(Zr0.52Ti0.48)O3–0.2 Ni0.8Zn0.2Fe2O4. It was found that as the piezoelectric-phase grain size increases the overall resistivity, piezoelectric, dielectric, and ferroelectric property of the composite increases and saturates above 600 nm. Below 200 nm average grain size, piezoelectric and dielectric properties decrease rapidly. The ferroelectric Curie temperature was found to decrease from 377 to 356 °C as the average grain size decreases from 830 to 111 nm. ME coefficient of the composite showed a rapid change below grain size of 200 nm and was found to saturate above 600 nm to a value of 155 mV/cm.Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suchetelene JV (1972) Philips Res Rep 27:28

    Google Scholar 

  2. Weng L, Fu Y, Song S, Tang J, Li J (2007) Scripta Mater 56:465

    Article  CAS  Google Scholar 

  3. Ren SQ, Weng LQ, Song SH, Li F, Wan JG, Zeng M (2005) J Mater Sci 40(16):4375. doi:https://doi.org/10.1007/s10853-005-1057-1

    Article  CAS  Google Scholar 

  4. Wu D, Gong W, Deng H, Li M (2007) J Phys D: Appl Phys 40:5002

    Article  CAS  Google Scholar 

  5. Srinivasan G, DeVreugd CP, Flattery CS, Laletsin VM, Paddubnaya N (2004) Appl Phys Lett 85(13):2550

    Article  CAS  Google Scholar 

  6. Van Run AMJG, Terrell DR, Scholing JH (1974) J Mater Sci 9:1710. doi:https://doi.org/10.1007/BF00540771

    Article  Google Scholar 

  7. Lupeiko TG, Lisnevskaya IV, Chkheidze MD, Zvyagintsev BI (1995) Inorg Mater 31:1139

    CAS  Google Scholar 

  8. Lupeiko TG, Lopatina IB, Lopatin SS, Getman IP (1991) Neorg Mater 27(11):2394

    CAS  Google Scholar 

  9. Bokhan YI, Laletin VM (1996) Inorg Mater 32(5):634

    Google Scholar 

  10. Lupeiko TG, Lopatin SS, Lisnevskaya IV, Zvyagintsev BI (1994) Inorg Mater 30:1353

    Google Scholar 

  11. Ryu J, Carazo AV, Uchino K, Kim HE (2001) J Electroceram 7:17

    Article  CAS  Google Scholar 

  12. Kang BS, Choi DG, Choi SK (1998) K Kor Phys Soc 32:S232

    CAS  Google Scholar 

  13. Martirena HT, Burfoot JC (1974) J Phys C: Solid State Phys 7:3182

    Article  CAS  Google Scholar 

  14. Choudhury S, Li YL, Krill C, Chen LQ (2007) Act Mater 55:1415

    Article  CAS  Google Scholar 

  15. Duiker HM, Beale PL (1990) Phys Rev B 41(1):490

    Article  CAS  Google Scholar 

  16. Sundar V, Kim N, Randall CA, Yimnirun R, Newnham RE (1996) The Effect of Doping and Grain Size On Electrostriction in Pb(Zr0.52Ti0.48)03. Proceedings of the 10th IEEE International Symposium on Application of Ferroelectrics, p 935

  17. Lu CJ, Ren SB, Shen HM, Liu JS, Wang YN (1996) J Phys Condens Matter 8:8011

    Article  CAS  Google Scholar 

  18. Sakaki C, Newalkar BL, Komerneni S, Uchino K (2001) Jpn J Appl Phys 40:6907

    Article  CAS  Google Scholar 

  19. Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR (1998) J Am Ceram Soc 81:677

    Article  CAS  Google Scholar 

  20. Jin BM, Kim J, Kim SC (1997) Appl Phys A: Mater Sci Proc 65:53

    Article  CAS  Google Scholar 

  21. Shaw TM, Mckinstry ST, Mcintyre PC (2000) Ann Rev Mater Sci 30:263

    Article  CAS  Google Scholar 

  22. Zhao Z, Buscaglia V, Viviani M, Buscaglia MT, Mitoseriu L, Testino A et al. (2004) Phys Rev B 70:024107

    Article  Google Scholar 

  23. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer Academic Publishers, USA, p 61

    Google Scholar 

  24. Arlt G (1990) J Mater Sci 25:2655

    Article  CAS  Google Scholar 

  25. Zhang S, Priya S, Shrout TR, Randall CA (2003) J Appl Phys 93:2880

    Article  CAS  Google Scholar 

  26. Chen Y-H, Uchino K, Viehland D (2001) J Appl Phys 89:3928

    Article  CAS  Google Scholar 

  27. Dong S, Zhai J, Li J, Viehland D (2006) Appl Phys Lett 89:252904

    Article  Google Scholar 

  28. Islam RA, Viehland D, Priya S (2008) J Mater Sci Lett 43(4):1497

    CAS  Google Scholar 

  29. Zubkov AS (1978) Elektrichestvo 10:77

    Google Scholar 

  30. Jiles DC (2003) Acta Mater 51:5907

    Article  CAS  Google Scholar 

  31. Gautschi G (2002) Piezoelectric sensorics. Springer, NY

    Book  Google Scholar 

  32. Cao W, Randall CA (1996) J Phys Chem Solids 57:1499

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Office of Basic Energy Science, Department of Energy for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, R.A., Priya, S. Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites. J Mater Sci 43, 3560–3568 (2008). https://doi.org/10.1007/s10853-008-2562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2562-9

Keywords

Navigation