Skip to main content

Advertisement

Log in

Preparation of nano-grained zirconia ceramics by low-temperature, low-pressure spark plasma sintering

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ce- and/or Y-doped zirconia nanopowders having average particle sizes ranging 12–18 nm have been synthesized by a technique based on mechanochemical processing (MCP). Despite their small particle size, the powders had excellent compactibility with green densities exceeding 50% achieved under a moderate uniaxial pressure of 150 MPa. Nearly fully dense ceramics having grain sizes of around 100 nm were successfully produced from these powders by spark plasma sintering (SPS) at temperatures of 1,050–1,150 °C for 5 min under pressures of 50–80 MPa; these temperatures and pressures are considerably lower than those required for achieving near full density with conventional nanopowders. Hardness and fracture-toughness measurements showed that the ceramics prepared by SPS had superior mechanical properties to those prepared by conventional pressureless sintering. It is argued that the high sinterability of the MCP nanopowders is ascribed to their ability to form uniform powder compacts under relatively low pressure, and that that ability in turn originates in two features of the MCP powders: absence of hard agglomeration and pseudo-spherical particle morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rhodes WH (1981) J Am Ceram Soc 64:19

    Article  CAS  Google Scholar 

  2. Skandan G (1995) NanoStruct Mater 5:111

    Article  CAS  Google Scholar 

  3. Sardic V, Winterer M, Hahn H (2000) J Am Ceram Soc 83:729

    Article  Google Scholar 

  4. Gao L, Lia W, Wanga HZ, Zhoub JX, Chaob ZJ, Zaib QZ (2001) J Eur Ceram Soc 83:135

    Article  Google Scholar 

  5. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ (2002) Acta Mater 50:4555

    Article  CAS  Google Scholar 

  6. Mayo MJ, Suresh A, Porter WD (2003) Rev Adv Mater Sci 5:100

    CAS  Google Scholar 

  7. Muroi M, Trotter G (2006) Ceramic Trans 190:129 [Also in Proceedings of the 6th pacific rim conference on ceramic and glass technology, Maui, Hawaii, September 2005 (in CD-ROM).]

    CAS  Google Scholar 

  8. McCormick PG, Ding J, Miao W–F, Street R (2001) US Patent 6203768 B1

  9. McCormick PG, Tsuzuki T (2003) US Patent 6503475

  10. Ding J, Tsuzuki T, McCormick PG, Street R (1996) J Phys D—Appl Phys 29:2365

    Article  CAS  Google Scholar 

  11. Ding J, Tsuzuki T, McCormick PG (1996) J Am Ceram Soc 79:2956

    Article  CAS  Google Scholar 

  12. Dodd AC, Raviprasad K, McCormick PG (2001) Scripta Mater 44:689

    Article  CAS  Google Scholar 

  13. Dodd AC, McCormick PG (2001) Acta Mater 49:4215

    Article  CAS  Google Scholar 

  14. Dodd AC, McCormick PG (2002) J Eur Ceram Soc 22:1823

    Article  CAS  Google Scholar 

  15. Tsuzuki T, McCormick PG (1997) Appl Phys A 65:607

    Article  CAS  Google Scholar 

  16. Liu W, McCormick PG (1999) NanoStruct Mater 12:187

    Article  Google Scholar 

  17. Muroi M, Street R, McCormick PG (2000) J Appl Phys 87:3424

    Article  CAS  Google Scholar 

  18. Muroi M, Street R, McCormick PG, Amighian J (2001) Phys Rev B 63:184414

    Article  Google Scholar 

  19. Yoshimura M, Ohji T, Sando M, Niihara K (1988) J Mater Sci Lett 17:1389

    Article  Google Scholar 

  20. Li W, Gao L (2000) J Eur Ceram Soc 20:2441

    Article  CAS  Google Scholar 

  21. Chen XJ, Khor KA, Chan SH, Yu LG (2003) Mater Sci Eng A341:43

    Article  CAS  Google Scholar 

  22. Anselmi-Tamburini U, Garay JE, Munir ZA, Tacca A, Maglia F, Spinolo G (2004) J Mater Res 19:3255

    Article  CAS  Google Scholar 

  23. Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scripta Mater 54:823

    Article  CAS  Google Scholar 

  24. Graeve OA, Singh H, Clifton A (2005) In: Proceedings of the 6th pacific rim conference on ceramic and glass technology, Maui, Hawaii, September 2005 (in CD-ROM)

  25. Amin KE (1991) Toughness, hardness, and wear. In: Schneider SJ (ed) Ceramics and glasses, engineering materials handbook, vol 4. ASM International, Materials Park, p 601

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihito Muroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muroi, M., Trotter, G., McCormick, P.G. et al. Preparation of nano-grained zirconia ceramics by low-temperature, low-pressure spark plasma sintering. J Mater Sci 43, 6376–6384 (2008). https://doi.org/10.1007/s10853-008-2559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2559-4

Keywords

Navigation