Journal of Materials Science

, Volume 43, Issue 9, pp 3279–3288 | Cite as

An in situ approach to synthesize pure phase FAU-type zeolite membranes: effect of aging and formation mechanism

  • Guangqi Zhu
  • Yanshuo Li
  • Hongliang Chen
  • Jie Liu
  • Weishen YangEmail author


FAU-type zeolite membranes were prepared on porous α-Al2O3 tubes by a two-stage in situ synthesis method. The synthesis was carried out in clear solutions without the aid of seeds or organic templates. The first stage synthesis was devoted to the in situ nucleation of FAU-type zeolite, aiming to induce an evenly covered zeolite layer on the support. In situ aging played an important role at this stage as it suppressed LTA phase and promoted the formation of a continuous zeolite layer. The second stage synthesis was performed in a dilute solution, where the pre-formed zeolite layer went on to grow and became compact. Scanning electron microscopy (SEM) observations show that the membranes were made up of well-shaped intergrown crystals, with the thickness around 7 μm. Pervaporation (a membrane-based separation process in which the liquid components diffuse through a membrane and are subsequently vaporized due to the low-pressure exerted on the permeate side of the membrane) measurements were carried out in a water/ethanol (10/90, w/w) mixture to evaluate the membrane performance. The structural and morphological evolutions of FAU-type zeolite membranes during synthesis were tracked down by X-ray diffraction and SEM. The formation mechanism was illuminated based on the experimental results.


Zeolite Secondary Growth Pervaporation Zeolite Crystal Direct Crystallization 



This work was supported by National Science Fund for Distinguished Young Scholars (20725313), Youth Science Fund of DICP (No. S200609), and the Ministry of Science and Technology of China (Grant No. 2003CB615802).


  1. 1.
    Tavolaro E, Drioli E (1999) Adv Mater 11:975CrossRefGoogle Scholar
  2. 2.
    Caro J, Noack M, Kölsch P, Schäfer R (2000) Micropor Mesopor Mater 38:3CrossRefGoogle Scholar
  3. 3.
    Lin YS, Kumakiri I, Nair BN, Alsyouri H (2002) Sep Purif Method 31:229CrossRefGoogle Scholar
  4. 4.
    Bowen TC, Nobel RD, Falconer JL (2004) J Membr Sci 245:1CrossRefGoogle Scholar
  5. 5.
    Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, New York, p 73, 168Google Scholar
  6. 6.
    Kusakabe K, Kuroda T, Murata A, Morooka S (1997) Ind Eng Chem Res 36:649CrossRefGoogle Scholar
  7. 7.
    Kusakabe K, Kuroda T, Morooka S (1998) J Member Sci 148:13CrossRefGoogle Scholar
  8. 8.
    Kusakabe K, Kuroda T, Uchino K, Hasegawa Y, Morooka S (1999) AIChE J 45:1220CrossRefGoogle Scholar
  9. 9.
    Guan G, Kusakabe K, Morooka S (2001) J Chem Eng Jpn 34:990CrossRefGoogle Scholar
  10. 10.
    Jeong B, Hasegawa Y, Sotowa K, Kusakabe K, Morooka S (2003) J Membr Sci 213:115CrossRefGoogle Scholar
  11. 11.
    Kita H, Inoue T, Asamura H, Tanaka K, Okamoto K (1997) Chem Commun 45Google Scholar
  12. 12.
    Kita H, Fuchida K, Horita T, Asamura H, Okamoto K (2001) Sep Purif Tech 25:261CrossRefGoogle Scholar
  13. 13.
    Li S, Tuan VA, Falconer JL, Noble RD (2002) Micropor Mesopor Mater 53:59CrossRefGoogle Scholar
  14. 14.
    Seike T, Matsuda M, Miyake M (2002) J Mater Chem 12:366CrossRefGoogle Scholar
  15. 15.
    Coutinho D, Balkus KJ Jr (2002) Micropor Mesopor Mater 52:79CrossRefGoogle Scholar
  16. 16.
    Clet G, Gora L, Nishiyama N, Jansen JC, van Bekkum H, Maschmeyer T (2001) Chem Commun 41Google Scholar
  17. 17.
    Kumakiri I, Yamaguchi T, Nakao S (1999) Ind Eng Chem Res 38:4682CrossRefGoogle Scholar
  18. 18.
    Weh K, Noack M, Sieber I, Caro J (2002) Micropor Mesopor Mater 54:27CrossRefGoogle Scholar
  19. 19.
    Cheng ZL, Gao EQ, Wan HL (2004) Chem Commun 1718Google Scholar
  20. 20.
    Nikolakis V, Xomeritakis G, Abibi A, Dickson M, Tsapatsis M, Vlachos DG (2001) J Membr Sci 184:209CrossRefGoogle Scholar
  21. 21.
    Algieri C, Golemme G, Kallus S, Ramsay JDF (2001) Micropor Mesopor Mater 47:127CrossRefGoogle Scholar
  22. 22.
    Zah J, Krieg HM, Breytenbach JC (2006) Micropor Mesopor Mater 93:141CrossRefGoogle Scholar
  23. 23.
    Cundy CS, Cox PA (2005) Micropor Mesopor Mater 82:1CrossRefGoogle Scholar
  24. 24.
    Wang B, Ma HZ (1998) Micropor Mesopor Mater 25:131CrossRefGoogle Scholar
  25. 25.
    Slangen PM, Jansen JC, van Bekkum H (1997) Micropor Mater 9:259CrossRefGoogle Scholar
  26. 26.
    Ogura M, Kawazu Y, Takahashi H, Okubo T (2003) Chem Mater 15:2661CrossRefGoogle Scholar
  27. 27.
    Fan W, Shirato S, Gao FF, Ogura M, Okubo T (2006) Micropor Mesopor Mater 89:227CrossRefGoogle Scholar
  28. 28.
    Li YS, Chen HL, Liu J, Yang WS (2006) J Membr Sci 277:230CrossRefGoogle Scholar
  29. 29.
    Li YS, Liu J, Yang WS (2006) J Membr Sci 281:646CrossRefGoogle Scholar
  30. 30.
    Nakazawa T, Sadakata M, Okubo T (1998) Micropor Mesopor Mater 21:325CrossRefGoogle Scholar
  31. 31.
    Chen HL, Song CS, Yang WS (2007) Micropor Mesopor Mater 102:249CrossRefGoogle Scholar
  32. 32.
    Sato K, Sugimoto K, Sekine Y, Takada M, Matsukata M, Nakane T (2007) Micropor Mesopor Mater 101:312CrossRefGoogle Scholar
  33. 33.
    Li QH, Creaser D, Sterte J (2002) Chem Mater 14:1319CrossRefGoogle Scholar
  34. 34.
    Yang SY, Li QH, Wang MJ, Navrotsky A (2005) Micropor Mesopor Mater 87:261CrossRefGoogle Scholar
  35. 35.
    Valtchev VP, Bozhilov KN (2004) J Phys Chem B 108:15587CrossRefGoogle Scholar
  36. 36.
    Wijmans JG (2003) J Membr Sci 220:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Guangqi Zhu
    • 1
    • 2
  • Yanshuo Li
    • 1
  • Hongliang Chen
    • 1
  • Jie Liu
    • 1
  • Weishen Yang
    • 1
    Email author
  1. 1.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations