Journal of Materials Science

, Volume 43, Issue 9, pp 3101–3111 | Cite as

Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation

  • Ana Hidalgo
  • Concha Domingo
  • Carlos Garcia
  • Sabine Petit
  • Carmen Andrade
  • Cruz Alonso
Article

Abstract

Supercritical carbonation of Portland cement binders was studied to analyse the influence of the type of cement on carbonation at high CO2 pressures (CO2 at 20 MPa and 318 K) and to improve the understanding of the effects on the microstructure and physicochemical properties of binders. The results were compared with those obtained in a natural exposure. Microstructural properties of supercritically and atmospherically carbonated Portland cement binders were examined using the complementary analytical techniques of FTIR, TG-DTA, and BSEM-EDX. Supercritically carbonated binders showed a microstructure based on a more polymerized and lower Ca form of CSH gel, formed by decalcification of high-Ca form of CSH gel. Results suggested that during the treatment at artificially intensified conditions, the crystallized calcium carbonate came mainly from the carbonation of the CSH gel, and at atmospheric conditions, from the carbonation of the portlandite phase.

References

  1. 1.
    Senevirtane AMG, Short NR, Page CL (2003) Compos: Part A 34:1105CrossRefGoogle Scholar
  2. 2.
    Short NR, Bough AR, Seneviratne AMG, Purnell P, Page CL (2004) J Mater Sci 39:5683. doi:10.1023/B:JMSC.0000040076.42260.cb CrossRefGoogle Scholar
  3. 3.
    Macias A, Kindness A, Glasser FP (1997) Cem Concr Res 27(2):215CrossRefGoogle Scholar
  4. 4.
    Alba N, Vázquez E, Gassó S, Baldasano JM (2001) Waste Manage 21:313CrossRefGoogle Scholar
  5. 5.
    Garrabrants AC, Sánchez F, Kosson DS (2004) Waste Manage 24:19CrossRefGoogle Scholar
  6. 6.
    Hartmann T, Paviet-Hartmann P, Rubin JB, Fitzsimmons MR, Sickafus KE (1999) Waste Manage 19:355CrossRefGoogle Scholar
  7. 7.
    Van Ginneken L, Dutré V, Adriansens W, Weyten H (2004) J Supercrit Fluids 30:175CrossRefGoogle Scholar
  8. 8.
    Fernández Bertos M, Simons SJR, Hills CD, Carey PJ (2004) J Hazard Mater B112:193CrossRefGoogle Scholar
  9. 9.
    Al-Kadhimi TKH, Banfill PFG, Millard SG, Bungey JH (1996) Adv Cem Res 8(30):47Google Scholar
  10. 10.
    Soroushian P, Aouadi F, Chowdhury H, Nossoni A, Sarwar G (2004) Cem Concr Compos 26:797Google Scholar
  11. 11.
    Bary B, Sellier A (2004) Cem Concr Res 34:1859CrossRefGoogle Scholar
  12. 12.
    Jones Jr (1996) US patent 005518540AGoogle Scholar
  13. 13.
    Van Gerven T, Van Baelen D, Dutre V, Vandecasteele C (2004) Cem Concr Res 34:149CrossRefGoogle Scholar
  14. 14.
    Short NR, Purnell P, Page CL (2001). J Mater Sci 36:35. doi:10.1023/A:1004870204162 CrossRefGoogle Scholar
  15. 15.
    Ngala VT, Page CL (1997) Cem Concr Res 27(7):995CrossRefGoogle Scholar
  16. 16.
    Johannesson B, Utgenannt P (2001) Cem Concr Res 31:925CrossRefGoogle Scholar
  17. 17.
    Arandigoyen M, Bicer-Simsir B, Alvarez JI, Lange DA (2006) Appl Surf Sci 252:7562CrossRefGoogle Scholar
  18. 18.
    García-González CA, Hidalgo A, Andrade C, Alonso MC, Fraile J, López-Periago AM, Domingo C (2006) Ind Eng Chem Res 45:4985CrossRefGoogle Scholar
  19. 19.
    García-González CA, Hidalgo A, Fraile J, López-Periago AM, Andrade C, Domingo C (2007) Ind Eng Chem Res 46:2488CrossRefGoogle Scholar
  20. 20.
    Goñi S, Gaztañaga MT, Guerrero A (2002) J Mater Res 17(7):1834CrossRefGoogle Scholar
  21. 21.
    Xu P, Kirckpatrick RJ, Poe B, McMillan PF, Cong X (1999) J Am Ceram Soc 82(3):742Google Scholar
  22. 22.
    Grutzeck MW (1999) Mater Res Innov 3:160CrossRefGoogle Scholar
  23. 23.
    Farcas F, Touzé Ph (2001) Bull lab Ponts Chaussées 230:77Google Scholar
  24. 24.
    Lee WKW, van Deventer JSJ (2002) Colloids Surf A: Physicochem Eng Asp 211:49CrossRefGoogle Scholar
  25. 25.
    Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, LondonGoogle Scholar
  26. 26.
    Hidalgo A, Petit S, Domingo C, Alonso C, Andrade C (2007) Cem Concr Res 37:63CrossRefGoogle Scholar
  27. 27.
    Sitarz M, Mozgawa W, Handke M (1999) J Mol Struct 511–512:281CrossRefGoogle Scholar
  28. 28.
    Mozgawa W (2001) J Mol Struct 596:129CrossRefGoogle Scholar
  29. 29.
    Mozgawa W, Sitarz M (2002) J Mol Struct 614:273CrossRefGoogle Scholar
  30. 30.
    Vagenas NV, Gatsouli A, Kontoyannis CG (2003) Talanta 59:831CrossRefGoogle Scholar
  31. 31.
    Klimesch DS, Ray A (1999) J Therm Anal Calorim 56:27CrossRefGoogle Scholar
  32. 32.
    Kalousek GL (1957) J Am Ceram Soc 40(3):74CrossRefGoogle Scholar
  33. 33.
    Stepkowska ET (2006) J Therm Anal Calorim 84(1):175CrossRefGoogle Scholar
  34. 34.
    Tai CY, Chen W-R, Shih S-M (2006) AIChE J 52(4):292CrossRefGoogle Scholar
  35. 35.
    O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Miner Metall Proc 19(2):95Google Scholar
  36. 36.
    Ray A (2002) Pure Appl Chem 74(11):2131CrossRefGoogle Scholar
  37. 37.
    Daimon M (1971) J Am Ceram Soc 54:423CrossRefGoogle Scholar
  38. 38.
    Groves GW, Rodway DI, Richardson IG (1990) Adv Cem Res 3(11):117Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana Hidalgo
    • 1
  • Concha Domingo
    • 2
  • Carlos Garcia
    • 2
  • Sabine Petit
    • 3
  • Carmen Andrade
    • 1
  • Cruz Alonso
    • 1
  1. 1.Instituto de Ciencias de la Construcción “Eduardo Torroja”CSICMadridSpain
  2. 2.Instituto de Ciencia de Materiales de BarcelonaCSIC, Campus UABBellaterraSpain
  3. 3.CNRS UMR 6532 HydrASAUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations