Skip to main content
Log in

Microstructure and phase transformation of zirconia-based ternary oxides for thermal barrier coating applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Five dopant oxides, Sc2O3, Yb2O3, CeO2, Ta2O5, and Nb2O5, were incorporated into 7YSZ to create ternary zirconia-based oxides with varying oxygen vacancies and substitutional defects. These ternary oxides were consolidated using a high-temperature sintering process. The resulting bulk oxides were subjected to microstructural study using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results show that the microstructures of the ternary zirconia-based oxides are determined by the amount of oxygen vacancies in the system, the dopant cation radius, and atomic mass. Increasing the number of oxygen vacancies in the lattice by the addition of trivalent dopant as well as the use of larger cations promotes the stabilization of the high-temperature cubic phase. The tetravalent cation, on the other hand, has the effect of retaining tetragonal phase to room temperature without the influence of oxygen vacancy. The addition of pentavalent oxide leads to the formation of monoclinic phase upon cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klemens PG (1990) Physica B 263–264:102

    Google Scholar 

  2. Jones RL (1996) In: Stern KH (ed) Thermal barrier coatings, metallurgical and ceramic protective coatings. Chapman & Hall, London, ISBN 0-412-54440-7

    Google Scholar 

  3. Bose S, DeMasi-Marcin J (1995) NASA CP3312:63

    Google Scholar 

  4. Levi CG (2004) Curr Opin Solid State Mater Sci 8:77

    Article  CAS  Google Scholar 

  5. Sakuma T (1998) Key Eng Mater 153–154:75

    Article  Google Scholar 

  6. Brandon JR, Taylor R (1991) Surf Coat Technol 46:75

    Article  CAS  Google Scholar 

  7. Nicholls JR, Lawson KJ (2002) Surf Coat Technol 151–152:383

    Article  Google Scholar 

  8. Zhu D, Chen YL, Miller RA (2002) J Am Ceram Soc 23(4):457

    CAS  Google Scholar 

  9. Wang D (2006) Ph.D. thesis, Carleton University, December

  10. Scott HG (1975) J Mater Sci 10:1527

    Article  CAS  Google Scholar 

  11. Michel D, Faudot F, Gaffet E, Mazerolles L (1993) J Am Ceram Soc 76(11):2884

    Article  CAS  Google Scholar 

  12. Lee DY, Kim D-J, Cho D-H (1998) J Mater Sci Lett 17:185

    Article  Google Scholar 

  13. Yashima M, Kakihana M, Yoshimura M (1996) Solid State Ionics 86–88:1131

    Article  Google Scholar 

  14. Ladd MFC, Palmer RA (1994) Structure determination by X-ray crystallography. Plenum Press

  15. Miller RA, Smialek JL, Garlick RG (1981) J Am Ceram Soc 3:241

    CAS  Google Scholar 

  16. Brandon JR, Taylor R (1991) Surf Coat Technol 46:75

    Article  CAS  Google Scholar 

  17. Corman GS, Stubican VS (1985) J Am Ceram Soc 68(4):174

    Article  CAS  Google Scholar 

  18. Kim D-J (1991) J Am Ceram Soc 74(12):3061

    Article  CAS  Google Scholar 

  19. Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) Scr Mater 39(8):1119

    Article  CAS  Google Scholar 

  20. Raghavan S, Wang H, Dinwiddie RB, Porter WD, Vaβen R, Stöver D, Mayo MJ (2004) J Am Ceram Soc 87(3):431

    Article  CAS  Google Scholar 

  21. Jones R, Reidy R, Mess D (1996) Surf Coat Technol 86–87:94

    Article  Google Scholar 

  22. Mayo MJ, Suresh A, Porter WD (2003) Rev Adv Mater Sci 5:100

    CAS  Google Scholar 

  23. Kim D-J (1990) J Am Ceram Soc 73(1):115

    Article  CAS  Google Scholar 

  24. Chevalier J, Gremillard L, Deville S (2007) Annu Rev Mater Res 37:1

    Article  CAS  Google Scholar 

  25. VanValzah JR, Eaton HE (1991) Surf Coat Technol 46:289

    Article  CAS  Google Scholar 

  26. Mèvrel R, Laizet J-C, Azzopardi A, Leclercq B, Poulain M, Lavigna O, Demange D (2004) J Eur Ceram Soc 24:3081

    Article  CAS  Google Scholar 

  27. Antou G, Montavon G, Hlawka F, Cornet A, Coddet C (2005) Ceram Int 31:611

    Article  CAS  Google Scholar 

  28. Kuwabara A, Katamura J, Ikuhara Y, Sakuma T (2002) J Am Ceram Soc 85:2557

    Article  CAS  Google Scholar 

  29. Kountouros P, Petzow G (1993) Science and technology of zirconia V. Technomic, Lancaster, Basel, p 30

    Google Scholar 

  30. Liu T, Mai Y-W, Swain MV (1994) J Mater Sci 29(3):835

    Article  CAS  Google Scholar 

  31. Raghavan S, Wang H, Porter WD, Dinwiddie RB, Mayo MJ (2001) Acta Mater 49:169

    Article  CAS  Google Scholar 

  32. Chen LB (2006) Surf Rev Lett 13(5):535

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank NSERC (Natural Science and Engineering Research Council) for providing a discovery grant (Grant No.: 261373-05) to Dr. Xiao Huang in supporting this research. The authors also acknowledge Drs. Q. Yang and Weijie Chen for their help with XRD and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Zakurdaev, A. & Wang, D. Microstructure and phase transformation of zirconia-based ternary oxides for thermal barrier coating applications. J Mater Sci 43, 2631–2641 (2008). https://doi.org/10.1007/s10853-008-2480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2480-x

Keywords

Navigation