Skip to main content

Advertisement

Log in

Relationship between the stored energy and indentation hardness of copper after compression test: models and measurements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Utilizing the differential scanning calorimetry (DSC) and Vickers hardness tests, the relationship between the stored energy and indentation hardness of copper after compression test is achieved experimentally. Three dislocation models are utilized to develop the relationships between the stored energy and hardness for justifying the experimental relationship. The relationships show that the stored energy is increased by increasing the hardness, non-linearly. By comparing the models’ results with the experimental data, the validity of each model at different ranges of hardness is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier Science, Oxford

    Google Scholar 

  2. Rohatgi A, Vecchio KS (2002) Mater Sci Eng 328A:256

    Article  Google Scholar 

  3. Byrne JG (1965) Recovery, recrystallization and grain growth. Macmillan Company, USA

    Google Scholar 

  4. Clarebrough LM, Hargreaves ME, West GW (1957) Acta metall 5:738

    Article  CAS  Google Scholar 

  5. Székely F, Groma I, Lendvai J (2001) Mater Sci Eng 309–310A:252

    Google Scholar 

  6. Schafler E, Zehetbauer M, Ungar T (2001) Mater Sci Eng 319–321A:220

    Article  Google Scholar 

  7. Rajmohan N, Hayakawa Y, Szpunar JA, Root JH (1997) Acta Mater 45:2485

    Article  CAS  Google Scholar 

  8. Mandal D, Baker I (1995) Scripta Metall et Mater 33:645

    Article  CAS  Google Scholar 

  9. Hemminger W (1977) Thermochim Acta 20:37

    Article  CAS  Google Scholar 

  10. Baker I, Liu L, Mandal D (1995) Scripta Metall et Mater 32:167

    Article  CAS  Google Scholar 

  11. Mandal D, Baker I (1995) Scripta Metall et Mater 33:813

    Google Scholar 

  12. Hohne GWH, Hemminger WF, Flammersheim HJ (2003) Differential scanning calorimetry, 2nd edn. Springer, Germany

    Book  Google Scholar 

  13. Damask AC, Dienes GJ (1971) Point defects in metals. Gordon and Breach Science Publisher, London

    Google Scholar 

  14. Kressel H, Brown N (1967) J Appl Phys 38:1618

    Article  CAS  Google Scholar 

  15. Seitz F (1952) Adv Phys 1:43

    Article  Google Scholar 

  16. Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Acta Mater 54:655

    Article  CAS  Google Scholar 

  17. Rohatgi A, Vecchio KS, Gray GT (2001) Metall Mater Trans 32A:135

    Article  CAS  Google Scholar 

  18. Tabor D (1951) The hardness of metal. Clarendon Press, Oxford

    Google Scholar 

  19. Stuwe HP, Padilha AF, Siciliano F Jr (2002) Mater Sci Eng 333A:361

    Article  Google Scholar 

  20. Nayebi A, Bartier O, Mauvoisin G, El Abdi R (2001) Int J Mech Sci 43:2679

    Article  Google Scholar 

  21. Poole WJ, Ashby MF, Fleck NA (1996) Scripta Mater 34:559

    Article  CAS  Google Scholar 

  22. Nabarro FRN, Basinski ZS, Holt DB (1964) Adv Phys 13:193

    Article  CAS  Google Scholar 

  23. McElroy RJ, Szkopiak ZC (1972) Int Metall Rev 17:175

    Article  CAS  Google Scholar 

  24. Mohamedi G, Bacroix B (2000) Acta Mater 48:3295

    Article  Google Scholar 

  25. Kelly A, Nicholson RB (1971) Strengthening methods in crystals. Applied Science Publishers Ltd., London

    Google Scholar 

  26. Ashby MF (1970) Philos Mag 21:399

    Article  CAS  Google Scholar 

  27. Hansen N (1977) Acta Metall 25:863

    Article  CAS  Google Scholar 

  28. Hansen N, Ralph B (1982) Acta Metall 30:411

    Article  CAS  Google Scholar 

  29. Jiang Z, Lian J, Baudelet B (1995) Acta Metall Mater 43:3349

    Article  CAS  Google Scholar 

  30. Fernandes JV, Vieira MF (2000) Acta Mater 48:1919

    Article  CAS  Google Scholar 

  31. Estrin Y (1995) In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, USA

  32. Conard H (1961) In: Thames G, Washburn J (eds) Electron microscopy and strength of crystals. Interscience, New York

    Google Scholar 

  33. Chia KH, Jung K, Conard H (2005) Mater Sci Eng 409A:32

    Article  Google Scholar 

  34. Chaudhri MM (1998) Acta Mater 46:3047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Kazeminezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazeminezhad, M. Relationship between the stored energy and indentation hardness of copper after compression test: models and measurements. J Mater Sci 43, 3500–3504 (2008). https://doi.org/10.1007/s10853-008-2454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2454-z

Keywords

Navigation