Skip to main content

Advertisement

Log in

Mechanical testing of titanium/aluminium–silicon interfaces by push-out

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical properties of Ti/Al–7Si assemblies produced by insert moulding were studied with a classical push-out test and a variant that is the circular-bending test. Special care has been taken for controlling both the reactivity at the Ti/Al–7Si interface and the metallurgical health of the Al–7Si matrix. Mechanical tests until complete debonding have been completed with interrupted tests, metallographic characterizations and FEM analysis of elastic stress state. A mean shear strength of the interface of about 120 MPa was obtained. When the Ti insert is solely fretted in the matrix, without chemical interaction between Ti and the Al–7Si alloy, the mean shear strength is significantly lower (48 MPa). This result clearly shows that chemical interaction at the interface (formation of a thin TiSi layer at the Ti side and a thick Al3Ti(Si) layer at the Al–7Si alloy side) improves the mechanical properties of the assembly. It is also shown that the failure sequence is characterized both by crack propagation from bottom to top and matrix yielding from top to bottom. Actually, interface damaging begins by crack initiation at the specimen bottom face (not at the top face and under the indenter) in a nearly pure mode I solicitation at a radial tensile stress of about 100 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Clyne TW, Whiters PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Durrant G, Gallernault B, Cantor B (1996) J Mater Sci 31:589

    Article  CAS  Google Scholar 

  3. Viala JC, Peronnet M, Barbeau F, Bosselet F, Bouix J (2002) Compos Part A 33A:1417

    Article  CAS  Google Scholar 

  4. Viala JC, Peillon N, Bosselet F, Bouix J (1997) Mater Sci Eng A 229A:95

    Article  Google Scholar 

  5. Barbeau F, Peronnet M, Bosselet F, Viala JC, Paty F, Loussault JG (2001) French Patent Application N°2 803 783, July 7, 2001, European Patent N°1 118 457, July 25, 2001

  6. Dezellus O, Digonnet B, Sacerdote-Peronnet M, Bosselet F, Rouby D, Viala JC (2007) Int J Adhes Adhes 27:417

    Article  CAS  Google Scholar 

  7. Sacerdote-Peronnet M, Guiot E, Bosselet F, Dezellus O, Rouby D, Viala JC (2007) Mater Sci Eng A 445–446A:296

    Article  Google Scholar 

  8. Redston GD, Stanworth JE (1946) J Soc Glass Technol 30:201

    CAS  Google Scholar 

  9. Peronnet M, Barbeau F, Bosselet F, Viala JC, Bouix J (1999) J Phys IV 9:Pr4/223

    CAS  Google Scholar 

  10. Norby P, Christensen AN (1986) Acta Chem Scand Ser A 40A:157

    Article  Google Scholar 

  11. Shob O, Nowotny H, Benezovsky F (1962) Plansee Pulvermet 10:67

    Google Scholar 

  12. Leguillon D (2001) C R Acad Sci Paris 329:97

    CAS  Google Scholar 

  13. Kallas MN, Koss DA, Hahn HT, Hellmann JR (1992) J Mater Sci 27:3821

    Article  CAS  Google Scholar 

  14. Galbraith JM, Rhyne EP, Koss DA, Hellmann JR (1996) Scripta Mater 35:543

    Article  CAS  Google Scholar 

  15. Majumdar BS, Miracle DB (1996) Key Eng Mater 116–117:153

    Google Scholar 

  16. Evans AG, Ruhle M, Dalgleish BJ, Charalambides PG (1990) Metall Trans A 21A:2419

    Article  CAS  Google Scholar 

  17. Cao HC, Evans AG (1989) Mech Mater 7:295

    Article  Google Scholar 

  18. O’Dowd NP, Stout MG, Shih CF (1992) Phil Mag A 66A:1037

    Article  Google Scholar 

  19. Chandra N, Ghonem H (2001) Compos Part A 32A:575

    Article  CAS  Google Scholar 

  20. Kerans RJ (1991) J Am Ceram Soc 74:1585

    Article  CAS  Google Scholar 

  21. Marshal DB (1992) Acta Metall Mat 40:427

    Article  Google Scholar 

  22. Koss DA, Petrich RR, Kallas MN, Hellmann JR (1994) Compos Sci Technol 51:27

    Article  CAS  Google Scholar 

  23. Brillet-Rouxel H, Arfan E, Leguillon D, Dupeux M, Braccini M, Orain S (2006) Microelectron Eng 83:2297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Dezellus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezellus, O., Milani, L., Bosselet, F. et al. Mechanical testing of titanium/aluminium–silicon interfaces by push-out. J Mater Sci 43, 1749–1756 (2008). https://doi.org/10.1007/s10853-007-2411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2411-2

Keywords

Navigation