Skip to main content
Log in

Dissolution kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminum

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ transmission electron microscopy is used to study dissolution of liquid single-phase Pb/Bi inclusions attached to a grain boundary in an alloy of Al99.29Pb0.65Bi0.06 at temperatures of 343, 370, and 389 °C, respectively. The initial size of the inclusions was smaller than 60 nm. Dissolution of the inclusions was observed until their complete disappearance. Digitized video recordings of the process of dissolution were used to obtain the dependence of the inclusion size with time. The kinetics of the dissolution of the grain boundary inclusions can be described with a model where it is assumed that grain-boundary diffusion of Pb and Bi is the controlling mechanism. The high value (2.3 eV) of the apparent activation enthalpy of dissolution indicates that the process is likely governed by the large negative enthalpies of solubility of Pb and Bi in Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. It can be written that \({{{c_{\rm b}^{\rm sat}}/{c^{\rm sat}}} = ( {{c_{\rm bo}^{\rm sat}}/{c_{\rm o}^{\rm sat}}}) \exp [( {\Updelta H_{\rm b}^{\rm sol}-\Updelta H^{\rm sol}})/ RT }]\), where \(\Updelta H^{\rm sol}_{\rm b} \) and \(\Updelta H^{{{\text{sol}}}}\) are the solute solubility enthalpies in grain-boundary and bulk solutions, respectively. The chemical potentials of the same component atoms in saturated bulk and grain-boundary solutions, which are in equilibrium are related as \({\mu^{{{\text{sat}}}}_{{\text{b}}}} = {\mu^{{{\text{sat}}}}} + {\bar A_{{{\text{sol}}}} \gamma ^{{{\text{sat}}}}_{{\text{b}}}},\) where \(\bar A_{{{\text{sol}}}}\) is the partial molar area of solute in grain boundary, and \(\gamma^{\rm sat}_{\rm b}\) (0.3 J/m) is the surface tension of a grain boundary saturated with the solute. Then, one can show that \({\Updelta H ^{{{\text{sol}}}}_{{\text{b}}}} - {\Updelta H ^{{{\text{sol}}}}} = {\bar A_{{{\text{sol}}}}\gamma ^{{{\text{sat}}}}_{{\text{b}}}} \cong {\Upomega_{\rm matr} \gamma ^{{{\text{sat}}}}_{{\text{b}}}} / \delta\, {\approx}\,10 \,{\rm kJ/mol} \ll {\Updelta H ^{{{\text{sol}}}}},\) where \(\delta\) (0.5 ⋅ 10−9 m) is the width of a grain boundary. Indeed, when the solute solubility in a grain boundary is restricted, the partial molar area can be defined as \(\bar A_{\rm sol} = A _{\rm m} + (1 - X_{\rm b}) \partial A_{\rm m} / \partial X_{\rm b},\) where \(A_{\rm m} = \Upomega_{\rm m}/\delta = [\Upomega_{\rm matr}(1-c_{\rm b}) + \Upomega_{\rm sol}c_{\rm b}]/\delta\) is the molar grain boundary area, \(X_{\rm b} = c_{\rm b}/c^{\rm sat}_{\rm b}\), \(\Upomega_{\rm matr}\) (2 ⋅ 10−5 m3) and \(\Upomega_{\rm sol}\) are the molar volumes of matrix and solute atoms, respectively. So, one can show that \(\bar A_{\rm sol} = [\Upomega_{\rm matr} (1-c^{\rm sat}_{\rm b}) + c^{\rm sat}_{\rm b} \Upomega_{\rm sol}]/\delta \,\cong\, \Upomega_{\rm matr} / \delta \, {\rm if} \,c^{\rm sat}_{\rm b} \ll 1\).

References

  1. Geguzin YaE, Krivoglaz MA (1973) Migration of macroscopic inclusions in solids. Consultants Bureau, New York

    Book  Google Scholar 

  2. Ashby MF (1980) Recrystallization and grain growth of multi-phase and particle containing materials. In: Hansen N, Jones AR, Leffers T (eds) First Risø international symposium on metallurgy and materials science, Risø National Laboratory, Roskilde, p 325

  3. Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, Boca Raton

    Google Scholar 

  4. Speight MV (1968) Acta Metall 16:133

    Article  CAS  Google Scholar 

  5. Ardell AJ (1972) Acta Metall 20:601

    Article  Google Scholar 

  6. Butler EP, Swann PR (1976) Acta Metall 24:343

    Article  CAS  Google Scholar 

  7. Czurratis P, Kroggel P, Löffler H (1988) Z Metallkd 79:307

    CAS  Google Scholar 

  8. Fujii T, Moriyama M, Kato M, Mori T (1993) Philos Mag 68:137

    Article  CAS  Google Scholar 

  9. Monzen R, Hasegawa T (1997) Philos Mag Lett 76:69

    Article  CAS  Google Scholar 

  10. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  11. Wagner C (1961) Z Electrochem 65:581

    CAS  Google Scholar 

  12. Kreye H (1970) Z Metallkd 61:108

    CAS  Google Scholar 

  13. Sun W (2005) Acta Mater 53:3329

    Article  CAS  Google Scholar 

  14. Massalski TB (Ed.-in-Chief) (1986) Binary alloy phase diagrams, vol 1. ASM, Metals Park, OH, pp 96, 147, 524

  15. Gabrisch H, Kjeldgaard L, Johnson E, Dahmen U (2001) Acta Mater 49:4259

    Article  CAS  Google Scholar 

  16. Gabrisch H, Dahmen U, Johnson E (1998) Microsc Res Tech 42:241

    Article  CAS  Google Scholar 

  17. Kaur I, Gust W (1988) Fundamentals of grain and interphase boundary diffusion. Ziegler, Stuttgart

    Google Scholar 

  18. Wolverton C, Ozolinš V (2006) Phys Rev B73:144104

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (Project 05-03-33141), the Danish Natural Science Research Council, and the Director, Office of Basic Energy Sciences, Materials Science Division, US Department of Energy, under contract DE-AC3-76SF00098. We are grateful to P. Ochin and his group (CNRS-CECM) for providing the rapidly solidified ribbons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei I. Prokofjev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokofjev, S.I., Johnson, E., Zhilin, V.M. et al. Dissolution kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminum. J Mater Sci 43, 3894–3899 (2008). https://doi.org/10.1007/s10853-007-2409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2409-9

Keywords

Navigation