Skip to main content
Log in

Development of epoxy-based electrets

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of a diepoxide resin in the form of 1,4-butanediol diglycidyl ether as the epoxy resin, lithium perchlorate (20 wt.%) as the ionic salt, a hardener (4,7,10-trioxatridecane-1,13-diamine, 15 wt.%) as the curing agent, and a poling DC electric field of 720 V/m gives an electret that exhibits a maximum voltage of 3.4 V during poling (30 min) and a stabilized voltage of 0.67 V after depoling (7.0 h). An epoxy system that hardens slowly (such as one with less hardener) is preferred, due to the longer time during poling for the ions to remain mobile. The rate of hardening rather than that of curing is the governing factor. The lithium salt hastens the curing, but it provides the ions and stabilizes the electret voltage, particularly during the first 30 min of depoling. After the first 30 min of depoling, crosslinking significantly enhances the stability of the electret voltage. The time constant for depoling is 0.8 h during the first 30 min of depoling and is 9 h afterward. Decrease of the lithium salt proportion from 20 to 10 wt.% still provides an effective electret, although the performance is reduced. An epoxy resin produced from Bisphenol F and epichlorohydrin is ineffective due to the high viscosity and fast hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hsieh WH, Hsu TY, Tai YC (1997) Transducers 97:1425

    Google Scholar 

  2. Thielemann C, Hess G (1999) In: Proceedings of SPIE – The International Society for Optical Engineering, vol 3680. Design, test and microfabrication of MEMS and MOEMS. SPIE, pp 748–756

  3. Zou Q, Tan Z, Wang Z, Pang J, Qian X, Zhang Q, Lin R, Yi S, Gong H, Liu L, Li Z (1998) J Microelectromech Syst 7:224

    Article  CAS  Google Scholar 

  4. Gaynor PT, Hughes JF (1998) Med Biol Eng Comput 36:615

    Article  CAS  Google Scholar 

  5. Shumakov VI, Chepurov AK, Kazlove VK, Kazakova TI (1975) Polim Med 5:247

    CAS  Google Scholar 

  6. Scott JF, Zubko P (2005) In: Proceedings of the 12th international symposium on electrets (ISE 12), 11–14 Sep 2005, Salvador, Brazil. IEEE, pp 113–115

  7. Magerramov AM, Kerimov MK, Hamidov EM (2004) In: Radiation safety problems in the Caspian region. NATO science series, IV: earth and environmental sciences, vol 41. Springer, The Netherlands, pp 205–209

  8. Bauer S, Bauer-Gogonea S, Dansachumller M, Graz I, Leonhartsberger H, Salhofer H, Schwoediauer R (2003) In: Proceedings of the IEEE ultrasonics symposium, vol 1. IEEE, pp 370–376

  9. Sahu DK, Khare PK, Shrivastava RK (2004) Indian J Phys 78:1205

    CAS  Google Scholar 

  10. Khare PK, Sahu DK, Verma A, Srivatava RK (2004) Indian J Pure Appl Phys 42:693

    CAS  Google Scholar 

  11. Fedosov SN, Sergeeva AV, Giacometti JA, Ribeiro PA (1999) In: Proceedings of SPIE – The International Society for Optical Engineering, vol 4017. Polymers and liquid crystals. SPIE, pp 53–58

  12. Holstein P, Leister N, Weber U, Geschke D, Binder H, Monti GA, Harris RK (1999) In: Proceedings of the 10th international symposium on electrets (ISE 10), Delphi, 22–24 Sept 1999, Greece. IEEE, pp 509–512

  13. Eisenmenger W, Schmidt H, Dehlen B (1999) Braz J Phys 29:295

    Article  CAS  Google Scholar 

  14. Frensch H, Wendorff JH (1985) In: Proceedings of the 5th international symposium on electrets (ISE 5), 1985. IEEE, pp 132–137

  15. Sessler GM, Gerhard-Multhaupt R, Von Seggern H (1985) In: Proceedings of the 5th international symposium on electrets (ISE 5), 1985. IEEE, pp 565–570

  16. Mellinger A, Singh R, Wegener M, Wirges W, Suarez RF, Lang SB, Santos LF, Gerhard-Multhaupt R (2005) In: Proceeding of the 12th international symposium on electrets (ISE 12), 11–14 Sept 2005, Salvador, Brazil. IEEE, pp 212–215

  17. Gol’tsov YI, Kramarenko IS, Panchenko EM, Zagoruiko VA, Mal’tsev VT, Sokolova TV (1983) USSR Avail VINITI Deposited Doc, (VINITI 2386-83), 19 pp

  18. Gubkin AN, Popova OS, Ogloblin VA, Kuskova AM (1974) In: Sb Ref –Vses Konf “Fiz Dielektr Perspekt Ee Razvit”, Meeting Date 1973, pp 2126–2127

  19. Gubkin AN, Kashtanova AM, Ogloblin VA, Rastorgueva AV (1972) USSR Tr Mosk Inst Elektron Mashinostr 21:38

    Google Scholar 

  20. Nakamura S, Ueshima M, Kobayashi T, Yamashita K (2003) Key Eng Mater 240–242 (Bioceramics) 445

  21. Gerhard-Multhaupt R, Kunstler W, Gome T, Pucher A, Weinhold T, SEIß M (2000) IEEE Trans Diel Electr Insul 7:480

    Article  CAS  Google Scholar 

  22. Mellinger A, Gonzalez FC, Gerhard-Multhaupt R, Santos LF, Faria RM (2002) In: Proceedings of the 11th international symposium on electrets (ISE 11), 1–3 Oct 2002, Melbourne, Australia. IEEE, pp 7–10

  23. Krashennikov AI, Lipaev SM, Rybnikov YS, Sbrodova LI (1986) USSR, Lakokrasochnye Materialy i Ikh Primenenie 3:38

    Google Scholar 

  24. Lee H, Neville K (1957) Epoxy resins, Ch. 2. McGraw-Hill Book Company, New York

  25. Peters ST (ed) (1998) Handbook of composites, Ch. 2. Chapman and Hall, New York

    Google Scholar 

  26. “Practical use of anhydrous LiClO4 and Mg(ClO4)2 in organic synthesis”, GFS Chemicals Inc, 2002, Issue No. 1, https://doi.org/www.gfschemicals.com, as on Aug 24, 2007

  27. Silva MM, Nunes SC, Barbosa PC, Evans A, de Zea Bermudez V, Smith MJ, Ostrovskii D (2006) Electrochim Acta 52:1542

    Article  CAS  Google Scholar 

  28. Santhosh P, Vasudevan T, Gopalan A, Lee K-P (2006) Mater Sci Eng B 135:65

    Article  CAS  Google Scholar 

  29. Wu C-G, Wu C-H, Lu M-I, Chuang H-J (2006) J Appl Polym Sci 99:1530

    Article  CAS  Google Scholar 

  30. Wegener M, Gerhard-Multhaupt R (2003) IEEE Trans Ultrason Ferroelectr Frequency Control 50:921

    Article  Google Scholar 

  31. Koh WH, Park IH (2003) J Korean Phys Soc 42:S920

    CAS  Google Scholar 

  32. Nishimura Y (1999) U.S. Patent 5951959

  33. Fedosov SN, Sergeeva AE (1993) J Electrostat 30:327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from Mark Diamond Research Fund, University at Buffalo, State University of New York, is gratefully acknowledged. Samples of epoxy and curing agent were kindly provided by Resolution Performance Products (Houston, TX) and BASF Corporation (Florham Park, NJ), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YC., Aoyagi, Y. & Chung, D.D.L. Development of epoxy-based electrets. J Mater Sci 43, 1650–1663 (2008). https://doi.org/10.1007/s10853-007-2391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2391-2

Keywords

Navigation