Skip to main content
Log in

Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Failure of structural components operating under high mechanical loading and/or in aggressive environments can often be attributed to intergranular degradation, e.g. by creep, corrosion, fatigue or brittle cracking. The present article is focussed on oxygen-diffusion-controlled grain-boundary attack, for example, of a nickel-based superalloy leading to intercrystalline oxidation or rapid cracking by dynamic embrittlement. Since grain-boundary diffusion depends on the crystallographic orientation relationship between adjacent grains, the grain-boundary-engineering approach was applied to reduce the susceptibility to grain-boundary attack. The relevant mechanisms are discussed in terms of modifying the network of general high-angle and so-called special grain boundaries taking the results of cracking experiments on bicrystals into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pugh SF (1991) An introduction to grain boundary fracture of metals. The Institute of Metals, London

    Google Scholar 

  2. Carpenter W, Kang BSJ, Chang KM (1997) In: Loria EA (ed) Proceedings superalloys 718, 625,706 and various derivatives, (TMS 1997). p 679

  3. Bika D (1992) Dynamic embrittlement in metallic alloys. PhD thesis, Univ. of Pennsylvania

  4. Krupp U (2005) Int Mater Rev 50:83

    Article  CAS  Google Scholar 

  5. Krupp U, Wagenhuber PE-G, Kane WM, McMahon CJ Jr (2005) Mater Sci Tech 21:1247

    Article  CAS  Google Scholar 

  6. Randle V (2005) Int Mater Rev 49:1

    Article  Google Scholar 

  7. Watanabe T (1984) Res Mech 11:47

    CAS  Google Scholar 

  8. Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50:2331

    Article  CAS  Google Scholar 

  9. Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Metall Mater 33:1387

    Article  CAS  Google Scholar 

  10. Yamaura S, Tsurekawa S, Watanabe T (2003) Mater Trans 44:1494

    Article  CAS  Google Scholar 

  11. Davé VR, Cola MJ, Kumar M, Schwartz AJ, Hussen GNA (2004) Suppl Weld J 1:1

    Google Scholar 

  12. Zhou Y, Aust KT, Erb U, Palumbo G (2001) In: Proceedings processing and fabrication of advanced materials 10 (ASM Intern.). p 438

  13. Furuhara T and Maki T (2005) Mater J Sci 40:919

  14. Alexandreanu B, Spencer BH, Thaveeprungsriporn V, Was GS (2003) Acta Mater 51:3831

    Article  CAS  Google Scholar 

  15. Lehockey EM, Palumbo G (1997) Mater Sci Eng A237:168

    Article  CAS  Google Scholar 

  16. Gao Y, Kumar M, Nalla RK, Ritchie RO (2005) Metall Mater Trans A 36A:3325

    Article  CAS  Google Scholar 

  17. Watanabe T, Tsurekawa S (eds) (2005) J Mater Sci 40:817

  18. Kumar M, Schuh C (eds) (2006) Scripta Mater 54:961

  19. Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969

    Article  CAS  Google Scholar 

  20. Winning M (2006) Scripta Mater 54:987

    Article  CAS  Google Scholar 

  21. Furukawa M, Horita Z, Langdon TG (2005) J Mater Sci 40:909

    Article  CAS  Google Scholar 

  22. Randle V (2006) Scripta Mater 54:1005

    Article  Google Scholar 

  23. Kim C-S, Rollett AD, Rohrer GS (2006) Scripta Mater 54:1011

    Article  Google Scholar 

  24. Randle V (1993) The measurement of grain boundary geometry. Institute of Physics Publ., Bristol

    Google Scholar 

  25. Brandon DG (1966) Acta Met 14:1479

    Article  CAS  Google Scholar 

  26. Palumbo G, Aust KT (1990) Acta Met Mater 11:2343

    Article  Google Scholar 

  27. Krupp U (2007) Fatigue crack propagation in metals and alloys. Wiley VCH, Weinheim

    Book  Google Scholar 

  28. Pfaendtner JA, McMahon CJ Jr (2001) Acta Mater 49:3369

    Article  CAS  Google Scholar 

  29. Birks N, Meier GH, Pettit FS (2006) Introduction to the high-temperature oxidation of metals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Bika D, Pfaendtner JA, Menyhard M, Mc Mahon CJ Jr (1995) Acta Metall Mater 43:1895

    Article  CAS  Google Scholar 

  31. Mishin Y, Herzig C (1999) Mater Sci Eng A260:55

    Article  CAS  Google Scholar 

  32. Kaur I, Gust W (1989) Fundamentals of grain and interphase boundary diffusion. Ziegler-Press, Stuttgart

    Google Scholar 

  33. Lejcek P, Hofmann S (1993) Interface Sci 1:163

    Article  CAS  Google Scholar 

  34. Muthiah RC, Pfaendtner JA, Ishikawa S, McMahon CJ Jr (1999) Acta Mater 47:2797

    Article  CAS  Google Scholar 

  35. Kane WM (2005) Dynamic embrittlement of nickel-based alloys. PhD thesis, Univ. of Pennsylvania

  36. Krupp U, Kane WM, Liu X, Laird C, McMahon CJ Jr (2003) Mater Sci Eng A349:213

    Article  CAS  Google Scholar 

  37. Palumbo G, Lehockey EM, Lin P (1998) J Mater 2:40

    Google Scholar 

  38. Randle V, Owen G (2006) Acta Mater 54:1777

    Article  CAS  Google Scholar 

  39. Schuh C, Kumar M, King WE (2006) Acta Mater 51:687

    Article  Google Scholar 

  40. Chen Y, Schuh C (2006) Acta Mater 54:4709

    Article  CAS  Google Scholar 

  41. Yun Bi H, Kokawa H, Wang ZJ, Shimada M, Sato YS (2003) Scripta Mater 49:219

    Article  Google Scholar 

  42. Xu Y, Bassani JL (1998) Mater Sci Eng A260:48

    Google Scholar 

  43. Klinger L, Rabkin E (2007) Acta Mater (in press) (doi:https://doi.org/10.1016/j.actamat.200704.039)

  44. Tan L, Sridharan K, Allen TR (2006) J Nuclear Mater 348:263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the U.S. Air Force Office of Scientific Research under grant no. 538532, by the U.S. Department of Energy, Basic Energy Sciences, under grant no. DE-FGO-OIER 45924, the Deutsche Forschungsgemeinschaft (DFG), under grant no. KR1999/7-1 and by the Alexander von Humboldt Foundation through a Feodor Lynen fellowship to the author is gratefully acknowledged. Furthermore, the author acknowledges the experimental contribution by Dr. William M. Kane, University of Pennsylvania, Philadelphia, USA and Dr. Vicente Braz da Trinade Filho, University of Siegen, Germany, and the many useful discussions with Professor Charles J. MacMahon Jr. and Professor Campbell Laird, both University of Pennsylvania, Philadelphia, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Krupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupp, U. Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing. J Mater Sci 43, 3908–3916 (2008). https://doi.org/10.1007/s10853-007-2363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2363-6

Keywords

Navigation