Skip to main content
Log in

Phase composition and wear behavior of NiTi alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study deals with the wear behavior of two NiTi shape memory alloys, one of them being martensitic, the other one austenitic at room temperature. Wear tests have been conducted with a disk-on-block geometry. The block was made of the NiTi alloy, whereas counterface disk materials were AISI M2 high-speed steel and a WC–Co hardmetal. From the evolution of the friction coefficient and temperature during the tests and from the characterization of the wear debris and traces, it has been possible to identify the main wear mechanisms. In the wear tests involving the M2 steel disk, both NiTi alloys display a transition, as a function of the applied load, from a mainly oxidation regime to a more complex situation, in which oxidation wear is accompanied by delamination of metallic alloy fragments. Higher wear rates of the shape memory alloys have been observed for the NiTi/WC–Co coupling. In this case, a transition from a mainly delamination wear to a regime featuring a mixture of delamination and oxidation wear has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Duerig TW, Melton KN, Stockel S, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann, London

  2. Van Humbeeck J (1999) Mater Sci Eng A A273–A275:134

    Article  Google Scholar 

  3. Lipscomb IP (1996) The application of shape memory alloys in medicine. Paston Publ., London

  4. Oshida Y, Sachdeva R, Miyazaki S, Fukuyo S (1990) Mater Sci Forum 56–58:705

    Google Scholar 

  5. Oshida Y, Miyazaki S (1991) Corros Eng 40:1009

    Article  Google Scholar 

  6. Busch JD (1994) In: Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, Ca, 1994. SMST Intnl. Comm. Publ., New York, p 259

  7. Zhang X, Nie J, Hou G (2000) Mater Sci Forum 327–328:35

    Article  Google Scholar 

  8. Bellouard Y (2002) In: Schwartz M (ed) Encyclopedia of smart materials, vol 2. Wiley, New York, pp 620–644

    Google Scholar 

  9. Adachi Y, Unjoh S, Kondoh M (2000) Mater Sci Forum 327–328:31

    Article  Google Scholar 

  10. Li DY (1996) Scripta Mat 34(2):195

    Article  CAS  Google Scholar 

  11. Qian LM, Sun QP, Zhou ZR (2005) Tribol Lett 18(4):463

    Article  CAS  Google Scholar 

  12. Richman RH, Kung D, Rao AS (1995) Wear 181–183:80

    Article  Google Scholar 

  13. Lin HC, Wu SK, Yeh CH (1991) Wear 249:557

    Article  Google Scholar 

  14. Imbeni V, Martini C, Prandstaller D, Poli G, Trepanier C, Duerig TW (2003) Wear 254:1299

    Article  CAS  Google Scholar 

  15. Li DY (2003) Wear 255:617

    Article  CAS  Google Scholar 

  16. Qian L, Zhou Z, Sun Q (2005) Wear 259:309

    Article  CAS  Google Scholar 

  17. Wang HM, Cao F, Cai LX, Tang HB, Yu RL, Zhang LY (2003) Acta Mat 51:6319

    Article  CAS  Google Scholar 

  18. Paro JA, Gustafsson TE, Koskinen J (2004) J Mater Process Technol 150:309

    Article  CAS  Google Scholar 

  19. Paro JA, Gustafsson TE, Koskinen J (2004) J Mater Process Technol 153–154:622

    Article  Google Scholar 

  20. Bram M, Ahmad-Khanlou A, Buchkremer HP, Stöver D (2002) Mater Lett 57:647

    Article  CAS  Google Scholar 

  21. Wang HM, Liu YF (2002) Mater Sci Eng 338:126

    Article  Google Scholar 

  22. Ni W, Cheng Y-T, Lukitsch M, Weiner AM, Lev LC, Grummon D (2005) Wear 259:842

    Article  CAS  Google Scholar 

  23. Tan L, Crone WC (2002) Acta Mater 50:4449

    Article  CAS  Google Scholar 

  24. Cui ZD, Man HC, Yang XJ (2003) Appl Surf Sci 208–209:388

    Article  Google Scholar 

  25. Tan L, Crone DA, Crone WC (2003) Biomaterials 24:3931

    Article  CAS  Google Scholar 

  26. Sridharan L, Sridharan WC, Sridharan K (2002) J Mater Sci Mater Med 13:501

    Article  Google Scholar 

  27. Wu SK, Lin HC, Lee CY (1999) Surf Coat Technol 113:13

    Article  CAS  Google Scholar 

  28. Pelletier H, Muller D, Mille P, Grob JJ (2002) Surf Coat Technol 158–159:301

    Article  Google Scholar 

  29. Pelletier H, Muller D, Mille P, Grob JJ (2002) Surf Coat Technol 158–159:309

    Article  Google Scholar 

  30. Lin HC, Liao HM, Lin KM, He JL, Chen KC (1997) Surf Coat Technol 92:178

    Article  CAS  Google Scholar 

  31. Wu SK, Lin HC, Chu CL (1997) Surf Coat Technol 92:206

    Article  CAS  Google Scholar 

  32. Tan L, Shaw G, Sridharan K, Crone WC (2005) Mech Mater 37:1059

    Article  Google Scholar 

  33. Ezugwu EO, Wang ZM (1997) J Mater Process Technol 68:262

    Article  Google Scholar 

  34. Lin HC, Lin KM, Chen YC (2000) J Mater Process Technol 105:327

    Article  Google Scholar 

  35. Weinert K, Petzoldt V (2004) Mater Sci Eng 378:180

    Article  Google Scholar 

  36. Lin HC, Lin KM, Cheng IS (2001) J Mat Sci 36:399

    Article  Google Scholar 

  37. Rohde M, Schussler A (1997) Sens Actuators A 61:463

    Article  CAS  Google Scholar 

  38. Straffelini G, Dorigatti R, Gialanella S (1998) Mater Sci Technol 14:143

    Article  CAS  Google Scholar 

  39. Gialanella S, Straffelini G (1999) Met Mater Trans A 30A:2019

    Article  CAS  Google Scholar 

  40. Ashby MF (1992) Materials selection in mechanical design (Materials and process selection charts). Pergamon Press, Oxford, p 36

  41. Stott FH, Wood GC (1978) Tribol Int 14:123

    Google Scholar 

  42. Hutchings IM (1992) Tribology. Edward Arnold Publ., London

  43. Li DY (1998) Wear 221:116

    Article  CAS  Google Scholar 

  44. Rabinowicz E (1995) Friction and wear of materials, 2nd edn. Wiley, New York

Download references

Acknowledgements

We wish to thank Dr. M. Piotto and Dr. M. Mazzanti for their valuable contribution to the present work. We also thank W. Vaona for DSC analyses, A. Casagranda for tensile tests, and C. Bressanini for ESEM observations respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gialanella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gialanella, S., Ischia, G. & Straffelini, G. Phase composition and wear behavior of NiTi alloys. J Mater Sci 43, 1701–1710 (2008). https://doi.org/10.1007/s10853-007-2358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2358-3

Keywords

Navigation