Skip to main content
Log in

ZnO microcolumns originated from self-assembled nanorods

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO microcolumns originating from self-assembled ZnO nanorods have been prepared by thermal evaporation method at 1,160 °C in a high-temperature tube furnace. The composition and microstructure of as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. It is found that the as-synthesized product consists of ZnO microcolumns with a hexagonal wurtzite structure. The growth direction of the ZnO microcolumns is along the normal direction of \( \left( {10\overline 1 2} \right) \) lattice plane of hexagonal structure, while ZnO nanorods that constitute the former are along [0001] direction. Based on the structures’ analysis, the possible growth mechanism of ZnO microcolumns originating from nanorods was discussed. Photoluminescence and Raman studies have also been carried out for the ZnO microcolumns and normal commercial powders at room temperature. The discrepancy between Raman and PL spectra of ZnO microcolumns and commercial powders may attribute more relative defects in the microcolumns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srikant V, Clarke DR (1998) J Appl Phys 83:5447

    Article  CAS  Google Scholar 

  2. Yang TL, Zhang DH, Ma J, Ma HL, Chen Y (1998) Thin Solid Films 326:60

    Article  CAS  Google Scholar 

  3. Cordaro JF, Shim Y, May JE (1986) J Appl Phys 60:4186

    Article  CAS  Google Scholar 

  4. Verardi P, Nastase N, Gherasim C, Ghica C, Dinescu M, Dinu R, Flueraru C (1999) J Cryst Growth 197:523

    Article  CAS  Google Scholar 

  5. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  Google Scholar 

  6. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H et al (2002) Science 292:1897

    Article  Google Scholar 

  7. Owen JHG, Miki K, Bowler DR (2006) J Mater Sci 41:4568. doi:https://doi.org/10.1007/s10853-006-0246-x

    Article  CAS  Google Scholar 

  8. Li Y, Ma XL (2005) Phys Status Solidi A 202:435

    Article  CAS  Google Scholar 

  9. Chander R, Raychaudhuri AK (2006) J Mater Sci 41:3623. doi:https://doi.org/10.1007/s10853-006-6218-3

    Article  CAS  Google Scholar 

  10. Hu JQ, Li Q, Meng XM, Lee CS, Lee ST (2003) Chem Mater 15:305

    Article  CAS  Google Scholar 

  11. Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, Laroche JR (2004) Mater Sci Eng R 47:1

    Article  Google Scholar 

  12. Zhao Q, Xu XY, Song XF, Zhang XZ, Yu DP, Li CP, Guo L (2006) Appl Phys Lett 88:033102

    Article  Google Scholar 

  13. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang PD (2001) Adv Mater 13:113

    Article  CAS  Google Scholar 

  14. Li Y, Meng GW, Zhang LD, Phillipp F (2000) Appl Phys Lett 76:2011

    Article  CAS  Google Scholar 

  15. Park WI, Kim DH, Jung SW, Yi GC (2002) Appl Phys Lett 80:4232

    Article  CAS  Google Scholar 

  16. Choopun S, Tabata H, Kawai T (2005) J Cryst Growth 274:167

    Article  CAS  Google Scholar 

  17. Yan M, Zhang HT, Widjaja EJ, Chang RPH (2003) J Appl Phys 94:5240

    Article  CAS  Google Scholar 

  18. Yuan HJ, Xie SS, Liu DF, Yan XQ, Zhou ZP, Ci LJ, Wang JX, Gao Y, Song L, Liu LF, Zhou WY, Wang G (2003) Chem Phys Lett 371:337

    Article  CAS  Google Scholar 

  19. Vanheuseden K, Seager CH, Waren WL, Tallant DR, Voigt JA (1996) J Appl Phys 79:7983

    Article  Google Scholar 

  20. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Appl Phys Lett 83:1689

    Article  CAS  Google Scholar 

  21. Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi HJ (2002) Adv Funct Mater 12:323

    Article  CAS  Google Scholar 

  22. He FQ, Zhao YP (2006) J Phys D: Appl Phys 39:2105

    Article  CAS  Google Scholar 

  23. Monticone S, Tufen R, Kanaev AV (1998) J Phys Chem B 102:2854

    Article  CAS  Google Scholar 

  24. Hu JQ, Bando Y (2003) Appl Phys Lett 82:1401

    Article  CAS  Google Scholar 

  25. Tong YH, Liu YC, Shao CL, Mu RX (2006) Appl Phys Lett 88:123111

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Outstanding Young Scientist Foundation for X. L. Ma (Grant No. 50325101) and the Special Funds for the Major State Basic Research Projects of China (Grant No. 2002CB613503). Doctor G. Liu and S. Ma are also acknowledged for the help in measuring the Raman spectra and PL spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, W.F., Xu, G. et al. ZnO microcolumns originated from self-assembled nanorods. J Mater Sci 43, 1711–1715 (2008). https://doi.org/10.1007/s10853-007-2344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2344-9

Keywords

Navigation