Journal of Materials Science

, Volume 43, Issue 11, pp 3867–3872 | Cite as

Atomistic study of the effect of B addition in the FeAl compound

  • J. M. Raulot
  • A. Fraczkiewicz
  • T. Cordonnier
  • H. Aourag
  • T. Grosdidier
Intergranular and Interphase Boundaries in Materials

Abstract

First principle calculations have been carried out to study energetic of boron atom impurities in bulk and symmetric Σ5(310) tilt grain boundaries of the ordered stoechiometric B2 FeAl intermetallic. A set of configurations was considered for studying the bulk behaviour: B in tetrahedral and octahedral interstitial positions or substituting Al and Fe. For the analysis of the segregation at the grain boundary, calculations were done for B substituting Al and Fe at three different locations and for B filling empty spaces along the interface. In each case, the defect formation energies were calculated to determine the site preference and their relative stability. The results indicate that B doping is metastable in the bulk and tends to segregate along the grain boundary. The overall behaviour of the B atoms at the boundary is essentially driven by the strong Fe–B interactions.

Keywords

Formation Energy Boron Atom Tetrahedral Site Coincidence Site Lattice Tilt Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fraczkiewicz A, Gay A-S, Biscondi M (1998) Mater Sci Eng A 258:108Google Scholar
  2. 2.
    Gay A-S, Fraczkiewicz A, Biscondi M (1999) Mater Sci Forum 294–296:453CrossRefGoogle Scholar
  3. 3.
    Morris DG, Morris-Munoz MA (1999) Intermetallics 7:1121CrossRefGoogle Scholar
  4. 4.
    Radhakrishna A, Baligidad RG, Sarma DS (2001) Scripta Materialia 45:1077CrossRefGoogle Scholar
  5. 5.
    Banerjee R, Amancherla S, Banerjee S, Fraser HL (2002) Acta Materialia 50:633CrossRefGoogle Scholar
  6. 6.
    Bozzolo GH, Noebe RD, Amador C (2002) Intermetallics 10:149CrossRefGoogle Scholar
  7. 7.
    Mekhrabov AO, Akdeniz MV (1999) Acta Materialia 47:2067CrossRefGoogle Scholar
  8. 8.
    Medvedeva NI, Gornostyrev YuN, Novikov DL, Mryasov ON, Freeman AJ (1998) Acta Materialia 46:3433CrossRefGoogle Scholar
  9. 9.
    Munroe PR, Kong HC (1996) Intermetallics 4:403CrossRefGoogle Scholar
  10. 10.
    Calonne O, Fraczkiewicz A, Louchet F (2000) Scripta Materialia 43:69CrossRefGoogle Scholar
  11. 11.
    Baker I, Li X, Xiao H, Carleton R, Georg EP (1998) Intermetallics 6:177CrossRefGoogle Scholar
  12. 12.
    Deevi SC, Sikka VK, Inkson BJ, Cahn RW (1997) Scripta Materialia 36:899CrossRefGoogle Scholar
  13. 13.
    Mayer J, Fahnle M (1997) Scripta Mater 37:131CrossRefGoogle Scholar
  14. 14.
    Bozzolo G, Ferrante J, Noebe RD, Amador C (1997) Scripta Mater 36:813CrossRefGoogle Scholar
  15. 15.
    Krachler R, Ipser H (1999) Intermetallics 7:141CrossRefGoogle Scholar
  16. 16.
    Faupel F, Hehenkamp Th (1999) Intermetallics 7:289CrossRefGoogle Scholar
  17. 17.
    Kellou A, Feraoun HI, Grosdidier T, Coddet C, Aourag A (2004) Acta Mater 52:3263CrossRefGoogle Scholar
  18. 18.
    Yan J-A, Wang C-Y, Wang S-Y (2005) Phys Rev B 72:134108CrossRefGoogle Scholar
  19. 19.
    Besson R, Legris A, Morillo J (2002) Phys Rev Lett 89:225502CrossRefGoogle Scholar
  20. 20.
    Kellou A, Grosdidier T, Aourag H (2006) Intermetallics 14:142CrossRefGoogle Scholar
  21. 21.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  22. 22.
    Kohn W, Sham L (1965) Phys Rev 140:1133CrossRefGoogle Scholar
  23. 23.
    Hafner J (2000) Acta Mater 48:71CrossRefGoogle Scholar
  24. 24.
    Kresse G, Hafner J (1993) Phys Rev B 47:558; (1994) 49:14251 Google Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  26. 26.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  27. 27.
    Kresse G, Hafner J (1996) J Phys Condens Matter 6:8245CrossRefGoogle Scholar
  28. 28.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Wang Y (1991) Phys Rev B 45:13244CrossRefGoogle Scholar
  30. 30.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  31. 31.
    Zhang SB, Wei SH, Zunger A, Katayama-Yoshida H (1998) Phys Rev B 57:9642CrossRefGoogle Scholar
  32. 32.
    Wei SH, Zhang SB, Zunger A, Katayama-Yoshida H (1999) J Appl Phys 85:7214CrossRefGoogle Scholar
  33. 33.
    Villars P, Calvert LD (1986) Pearson’s handbook of crystallographic data for intermetallic phases. American Society for Metals, Metals ParkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. M. Raulot
    • 1
  • A. Fraczkiewicz
    • 2
  • T. Cordonnier
    • 2
  • H. Aourag
    • 3
  • T. Grosdidier
    • 1
  1. 1.Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM)UMR-CNRS 7078, Université Paul Verlaine de MetzMetzFrance
  2. 2.Centre de Sciences des Matériaux et des StructuresUMR CNRS 5146, ENSMSESt Etienne, Cedex 2France
  3. 3.Laboratoire d’Etude et de Prédiction de MatériauxURMER, Université de TlemcenTlemcenAlgeria

Personalised recommendations