Effect of heavy interstitials on anelastic properties of Nb-1.0 wt% Zr alloys
- 97 Downloads
- 3 Citations
Abstract
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Keywords
Internal Friction Activation Enthalpy Relaxation Peak Metallic Matrix Torsion PendulumNotes
Acknowledegements
The authors wish to thank Prof. Dr. Durval Rodrigues Júnior (USP-EEL) for the samples, the Universidade Estadual de Mato Grosso do Sul (UEMS) and the Brazilian CNPq and FAPESP agencies for their financial support.
References
- 1.Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New YorkGoogle Scholar
- 2.Snoek JL (1939) Physica 6:591CrossRefGoogle Scholar
- 3.Szkopiak ZC, Smith JT (1975) J Phys D 8:1273CrossRefGoogle Scholar
- 4.Weller M (1995) J Phys IV 5:199Google Scholar
- 5.Schaller R, Fantozzi G, Gremaud G (2001) Mechanical spectroscopy. Trans Tech Publications, LausanneGoogle Scholar
- 6.Raymond JF, Rex BM (1978) Mat Sci Eng 33:113CrossRefGoogle Scholar
- 7.Haneczok G, Rasek J (2001) Defect Diff Forum 3:188Google Scholar
- 8.Bunn PM, Cummings DG, Leavenworth HW Jr (1962) J Appl Phys 33:3009CrossRefGoogle Scholar
- 9.Hasson DF, Arsenault RJ (1972) Treatise on materials science. Academic Press, New YorkGoogle Scholar
- 10.Botta Fo WJ, Grandini CR, Florêncio O, Tejima H, Jordão JAR (1990) Acta Metall Mater 38:391CrossRefGoogle Scholar
- 11.Florêncio O, Silva Jr PS, Botta Fo WJ, Grandini CR (2003) Mat Res 6:541CrossRefGoogle Scholar
- 12.Grandini CR (2002) Rev Bras Apl Vácuo 19:13Google Scholar
- 13.Florêncio O, Freitas WA, Botta Fo WJ, Grandini CR, Jordão JAR (1996) J Phys IV 6:123Google Scholar
- 14.Fast JD (1976) Gases in metals. Philips Technical Library, New YorkGoogle Scholar
- 15.Van Torne LI, Thomas G (1963) Acta Metall 11:881CrossRefGoogle Scholar
- 16.Swartz JG (1969) Acta Metall 17:1511CrossRefGoogle Scholar
- 17.Ahmad MS, Szkopiak ZC (1972) J Mat Sci 7:701CrossRefGoogle Scholar
- 18.Mosher D, Dollins C, Wert C (1970) Acta Metall 18:797CrossRefGoogle Scholar
- 19.Haneczok G, Weller M, Diehl J (1992) Phys Status Solidi B 172:557CrossRefGoogle Scholar
- 20.Weller M, Li GY, Zhang JX, Kê TS, Diehl J (1881) Acta Metall 29:1047CrossRefGoogle Scholar
- 21.Hasson DF, Arsenaut RJ (1971) Scr Mater 5:75Google Scholar
- 22.Szkopiak ZC (1976) Nuovo Cimento 33:293CrossRefGoogle Scholar
- 23.Miura E, Ota K, Yoshimi K, Hanada S (2003) Phil Mag 83:2343CrossRefGoogle Scholar
- 24.Ahmad MS, Szkopiak ZC (1970) J Phys Chem Solids 31:1799CrossRefGoogle Scholar
- 25.Weller M, Haneczok G, Diehl J (1992) Phys Status Solidi B 172:145CrossRefGoogle Scholar
- 26.Florêncio O, Grandini CR, Botta Fo WJ, Guedes PR, Silva Jr PS (2004) Mat Sci Eng. A 370:131CrossRefGoogle Scholar
- 27.Almeida LH, Grandini CR, Machado JPB, Rodrigues Jr D (2006) submitted to Mat Sci Eng AGoogle Scholar
- 28.Cantelli R, Szkopiak ZC (1976) Appl Phys 9:153CrossRefGoogle Scholar
- 29.Almeida LH, Niemeyer TC, Pires KCC, Grandini CR, Pintão CAF, Florêncio O (2004) Mat Sci Eng A 370:96CrossRefGoogle Scholar