Skip to main content
Log in

Radiotracer investigation of diffusion, segregation and wetting phenomena in grain boundaries

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The combination of so-called B- and C-type solute grain boundary (GB) diffusion measurements is a unique and reliable tool for the determination of the solute segregation factor for the true dilute limit conditions. A series of such measurements with different solutes in the same high purity Cu material gained comprehensive quantitative information on the solute segregation behaviour. Specially designed radiotracer experiments on bicrystals supplied valuable information on non-linear solute segregation and even a complete solute segregation isotherm could be determined. The strong solute segregation may invoke new effects. The GB wetting transition in the Bi–Cu system was investigated by radiotracer diffusion. A pronounced increase of GB diffusivity was observed in the two-phase (solid + liquid) region of the corresponding phase diagram, with the GB diffusivity of Cu being similar to the diffusion rate in a liquid. Such a GB diffusion enhancement exists even in the single phase (solid solution in Cu) region manifesting the existence of a pre-wetting GB phase transition in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sigle W, Richter G, Rühle M, Schmidt S (2006) Appl Phys Lett 89:121911

    Article  Google Scholar 

  2. Keast VJ, Williams DB (1999) Acta Mater 47:3999

    Article  CAS  Google Scholar 

  3. Lejcek P, Hofmann S (1995) Crit Rev Solid State Mater Sci 20:1

    Article  CAS  Google Scholar 

  4. Straumal B, Baretzky B (2004) Interface Sci 12:147

    Article  Google Scholar 

  5. Surholt T, Herzig Chr (1997) Acta Mater 45:3817

    Article  CAS  Google Scholar 

  6. Tokei Z, Erdelyi Z, Girardeaux C, Rolland A (2000) Phil Mag A 80:1975

    Article  Google Scholar 

  7. Divinski SV, Ribbe J, Schmitz G, Herzig Chr (2007) Acta Mater 55:3337

    Article  CAS  Google Scholar 

  8. Harrison LG (1961) Trans Faraday Soc 57:597

    Article  Google Scholar 

  9. Atkinson A, Taylor RI (1981) Phil Mag A 43:979

    Article  CAS  Google Scholar 

  10. Sommer J, Herzig Chr (1992) J Appl Phys 72:2758

    Article  CAS  Google Scholar 

  11. Gas P, Beke DL, Bernardini J (1992) Phil Mag Lett 65:133

    Article  Google Scholar 

  12. Divinski SV, Hisker F, Kang Y-S, Lee J-S, Herzig Chr (2002) Z Metallkd 93:256, 265

    Article  CAS  Google Scholar 

  13. Divinski SV, Hisker F, Kang Y-S, Lee J-S, Herzig Chr (2003) Interface Sci 11:67

    Article  CAS  Google Scholar 

  14. Suzuoka TJ (1961) Trans Jap Inst Metals 2:25

    Article  CAS  Google Scholar 

  15. Divinski SV, Lohmann M, Herzig Chr (2001) Acta Mater 49:249

    Article  CAS  Google Scholar 

  16. Divinski SV, Lohmann M, Herzig Chr (2004) Acta Mater 53:1249

    Google Scholar 

  17. Surholt T, Mishin Y, Herzig Chr (1994) Phys Rev B 50:3577

    Article  CAS  Google Scholar 

  18. Surholt T, Herzig Chr (1997) Defect Diffus Forum 143–147:1391

    Article  Google Scholar 

  19. Lohmann M, Divinski SV, Herzig Chr (2003) Z Metallkd 94:249

    Article  Google Scholar 

  20. Divinski SV, Lohmann M, Prokofjev S, Herzig Chr (2005) Z Metallkd 96:1181

    Article  CAS  Google Scholar 

  21. McLean D (1957) Grain boundaries in metals. Clarendon Press, Oxford

    Google Scholar 

  22. Fowler RH, Guggenheim EH (1960) Statistical thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  23. Berthier F, Creuze J, Tetot R, Legrand B (2002) Phys Rev B 65:195413

    Article  Google Scholar 

  24. Creuze J, Berthier F, Tetot R, Legrand B (2000) Phys Rev B 62:2813

    Article  CAS  Google Scholar 

  25. Bokstein BS, Fradkov VE, Beke DL (1992) Phil Mag A 65:277

    Article  Google Scholar 

  26. Mishin Y, Herzig Chr (1993) J Appl Phys 73:8206

    Article  CAS  Google Scholar 

  27. Budke E, Surholt T, Prokofjev S, Shvindlerman L, Herzig Chr (1999) Acta Mater 47:385

    Article  Google Scholar 

  28. Gibbs GB (1966) Phys Stat Solidi 16:K27

    Article  CAS  Google Scholar 

  29. Fisher JC (1951) J Appl Phys 22:74

    Article  CAS  Google Scholar 

  30. Divinski SV, Lohmann M, Herzig Chr (2003) Interface Sci 11:21

    Article  CAS  Google Scholar 

  31. Chang LS, Rabkin E, Straumal B, Baretzky B, Gust W (1999) Acta Mater 47:4041

    Article  CAS  Google Scholar 

  32. Laporte V, Wolski K, Berger P, Terlain A, Santarini G (2005) Defect Diffus Forum 237–240:683

    Article  Google Scholar 

  33. Divinski S, Lohmann M, Herzig Chr, Straumal B, Baretzky B, Gust W (2005) Phys Rev B 71:104104

    Article  Google Scholar 

  34. Cahn JW (1977) J Chem Phys 66:3667

    Article  CAS  Google Scholar 

  35. Kikuchi R, Cahn JW (1987) Phys Rev B 36:418

    Article  CAS  Google Scholar 

  36. Hauge EH, Schick M (1983) Phys Rev B 27:4288

    Article  CAS  Google Scholar 

  37. Wynblatt P, Chatain D, Pang Y (2006) J Mater Sci 41:7760, doi: https://doi.org/10.1007/s10853-006-0406-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S. Prokofjev (Institute of Solid State Physics, Chernogolovka, Russia) for the preparation of Cu Σ5 bicrystals. The authors are grateful to Prof. B. Straumal (Institute of Solid State Physics, Chernogolovka, Russia) and Dr. B. Baretzky (Max Planck Institute for Metals Research, Stuttgart, Germany) for the preparation and characterization of the Cu–Bi alloys and for valuable discussion. The financial support through the research grant of the Deutsche Forschungsgemeinschaft (Projects He898/24-1 and Schm1182/3-1) is greatly acknowledged. The 110mAg and 64Cu radioisotope production at the research reactor GKSS, Geesthacht, Germany is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Divinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divinski, S., Herzig, C. Radiotracer investigation of diffusion, segregation and wetting phenomena in grain boundaries. J Mater Sci 43, 3900–3907 (2008). https://doi.org/10.1007/s10853-007-2316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2316-0

Keywords

Navigation