Skip to main content
Log in

Service life prediction for refractory materials

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrasonic pulse velocity testing and image analysis were used to predict the thermal stability of cordierite–mullite refractories. Two compositions used as substrates in fast firing of porcelain whiteware, characterized by different microstructure and crack propagation behavior, were investigated. Fracture strength and fracture toughness values were obtained from three point bending test and chevron notched specimen technique, respectively. The measurement of the ultrasonic velocity was used to assess the material degradation with increasing number of thermal-shock cycles and specimen damage was monitored using image analysis to obtain further evidence of material degradation. The correlation between thermo-mechanical properties, ultrasonic velocity, microstructure, crack-propagation behavior and thermal-shock resistance was discussed. A remarkable similarity was found between the variation of ultrasonic velocity (when measured through the length of the refractory plates) and fracture strength with number of thermal shock cycles. On the other hand, the development of surface microcracking, as monitored by image analysis, is in good agreement with the variation of KIC with the number of thermal-shock cycles. The variation of the \(\frac{d\sigma_{\rm f}}{dE_{\rm dyn}}\) ratio with number of thermal-shock cycles shows the highest gradient of the investigated trends and it is proposed as a promising parameter to differentiate refractory materials regarding their different thermal shock behavior. Service life prediction models for refractory plates, from measured values of ultrasonic velocity and surface damage analysis, were proposed and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aneziris CG, Klippel U, Schärfl W, Stein V, Li Y (2007) Int J Appl Ceram Techn 4(6):481

    Article  CAS  Google Scholar 

  2. Baker TJ, Zimba J, Akpan ET, Bashir I, Watola CT, Soboyejo WO (2006) Acta Mater 54:2665

    Article  CAS  Google Scholar 

  3. Bolelli G, Cannillo V, Lugli C, Lusvarghi L, Manfredini T (2006) J Eur Ceram Soc 26:2561

    Article  CAS  Google Scholar 

  4. Norton FH (1931) In: Refractories. Mcgraw-Hill, New York, 3rd edn., 1949

  5. Goodrich HR (1927) J Am Ceram Soc 10:784

    Article  Google Scholar 

  6. Hasselman DPH (1969) J Am Ceram Soc 52:600

    Article  CAS  Google Scholar 

  7. Hasselman DPH (1970) Bull Am Ceram Soc 49:1033

    Google Scholar 

  8. Nakayama J (1964) Jpn J Appl Phys 3:422

    Article  Google Scholar 

  9. Davidge RW, Tappin G (1967) Trans Br Ceram Soc 66:405

    CAS  Google Scholar 

  10. Tacrarian MS (1955) Bull Soc Fr Ceram 29:20

    Google Scholar 

  11. Fawzy A, Charles ES (1985) Am Ceram Soc Bull 64:1555

    Google Scholar 

  12. Lawlar JG, Ross RH, Rub E (1981) Am Ceram Soc Bull 60:713

    CAS  Google Scholar 

  13. Boccaccini DN, Romagnoli M, Kamseu E, Veronesi P, Leonelli C, Pellacani GC (2007) J Eur Ceram Soc 27:1859

    Article  CAS  Google Scholar 

  14. Nyiogi SK, Das AC (1994) Interceram 43:453

    Google Scholar 

  15. Volkov-Husovic TD, Majstorovic J, Cvetkovic M (2003) Interceram 52:296

    CAS  Google Scholar 

  16. Volkov-Husoviæ TD, Janèiæ RM, Mitrakoviæ D (2005) Am Ceram Soc Bull 84:1

    Google Scholar 

  17. Boccaccini DN, Leonelli C, Rivasi MR, Romagnoli M, Boccaccini AR (2005) Ceram Int 31:417

    Article  CAS  Google Scholar 

  18. Leonelli C, Boccaccini DN, Dlouhy I, Veronesi P, Cannillo V, Boccaccini AR (2007) Adv Appl Ceram 106:142

    Article  Google Scholar 

  19. Boccaccini AR, Rawlings RD, Dlouhy I (2003) Mater Sci Eng A 347:102

    Article  Google Scholar 

  20. Bluhm JI (1975) Engng Fract Mech 7:593

    Article  Google Scholar 

  21. Pickles CSJ, Field JE (1996) J Phys D: Appl Phys 29:436

    Article  CAS  Google Scholar 

  22. Boccaccini DN (2007) Study of thermal conductivity in refractory materials by means of a guarded hot plate apparatus, in study of thermomechanical properties of refractory materials by non-destructive methods, design of facilities for thermomechanical properties characterization, PhD Thesis, University of Modena and Reggio Emilia. Dip. Ing. Mat. e dell’Ambiente

  23. Emery AF (1980) In: Hasselman DPH, Heiler RA (eds) Thermal stresses in severe environment. Plenum Press, New York

    Google Scholar 

  24. Boccaccini AR, Ponton CB, Chawla KK (1998) Mat Sci Eng A 241:141

    Article  Google Scholar 

  25. Gdoutos EE (1993) In fracture mechanics: an introduction. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  26. Boccaccini DN, Volkov Husovic T, Romagnoli M, Veronesi P, Cannio M, Leonelli C, Pellacani G, Boccaccini AR (2007) Int J Appl Ceram Tec 4(3):260

    Article  CAS  Google Scholar 

  27. Chlup Z, Dlouhy I, Boccaccini AR, Boccaccini DN, Leonelli C, Romagnoli M (2005) Key Eng Mater 290:260

    Article  CAS  Google Scholar 

  28. Chlup Z, Boccaccini D, Leonelli C, Romagnoli M, Boccaccini AR (2006) Silikáty 50:245

    CAS  Google Scholar 

  29. Hasselman DPH, Singh JP (1979) Am Ceram Soc Bull 58:856

    CAS  Google Scholar 

  30. Rice RW (1998) In: Porosity of ceramics. Marcel Dekker, New York, p 539

  31. Ryshkewitch E (1953) J Am Ceram Soc 36:65

    Article  Google Scholar 

  32. Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) In: Duran P, Fernandez JF (eds) On the porosity dependence of the fracture strength of ceramics in third Euro-ceramics, engineering ceramics, vol 3, p 895

  33. Davis WR (1968) Trans Brit Ceram Soc 67:515

    Google Scholar 

  34. Baxes GA (1994) Digital image processing principle and applications. John Wiley and sons Inc, New York, p 157

    Google Scholar 

Download references

Acknowledgement

Financial support provided by the Czech Science Foundation under projects number 106/05/0495 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccini, D.N., Cannio, M., Volkov-Husoviæ, T.D. et al. Service life prediction for refractory materials. J Mater Sci 43, 4079–4090 (2008). https://doi.org/10.1007/s10853-007-2315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2315-1

Keywords

Navigation