Skip to main content
Log in

ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical properties of wurtzite-type ZnO low-dimensional structures were analysed using a scanning tunnelling microscopy (STM) in situ holder for transmission electron microscopes (TEM). Compared to similar studies in the literature employing nanowires or nanobelts, our work illustrates that rather complex structures can be reliably analysed with this technique. Through controlled contact manipulations it was possible to alter the systems I–V characteristics and, in separate experiments, to follow their electrical response to cycles of induced stress. Analysis of the I–V curves showed higher than expected resistances which, according to the detailed TEM characterisation, could be correlated with the considerable density of defects present. These defects accumulate in specific areas of the complex structural arrays of ZnO and represent high resistance points responsible for structural failure, when the systems are subjected to extreme current flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vigue F, Vennegues P, Vezian S, Laugt M, Faurie J-P (2001) Appl Phys Lett 79:194

    Article  CAS  Google Scholar 

  2. Jiao SJ, Zhang ZZ, Lu YM, Shen DZ, Yao B, Zhang JY, Li BH, Zhao DX, Fan XW, Tang ZK (2006) Appl Phys Lett 88:031911

    Article  Google Scholar 

  3. Ding Y, Wang ZL (2004) J Phys Chem B 108:12280

    Article  CAS  Google Scholar 

  4. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  CAS  Google Scholar 

  5. Svensson K, Jompol Y, Olin H, Olsson E (2003) Rev Sci Instrum 74:4945

    Article  CAS  Google Scholar 

  6. Svensson K, Olin H, Olsson E (2004) Phys Rev Lett 93:145901

    Article  CAS  Google Scholar 

  7. Minor AM, Asif SAS, Shan Z, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL (2006) Nat Mater 5:697

    Article  CAS  Google Scholar 

  8. Huang JY, Chen S, Wang ZQ, Kempa K, Wang YM, Jo SH, Chen G, Dresselhaus MS, Ren ZF (2006) Nature 439:281

    Article  CAS  Google Scholar 

  9. Jin CH, Zhang ZY, Wang JY, Chen Q, Peng L-M (2006) Appl Phys Lett 89:213108

    Article  Google Scholar 

  10. Wang XD, Zhou J, Song JH, Liu J, Xu N, Wang ZL (2006) Nano Letters 6:2768

    Article  CAS  Google Scholar 

  11. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) J Phys Chem B 107:659

    Article  CAS  Google Scholar 

  12. Shen G, Bando Y, Chen D, Liu B, Zhi C, Golberg D (2006) J Phys Chem B 110:3973

    Article  CAS  Google Scholar 

  13. Shen G, Bando Y, Lee C-J (2005) J Phys Chem B 109:10578

    Article  CAS  Google Scholar 

  14. Golberg D, Mitome M, Kurashima K, Zhi CY, Tang CC, Bando Y, Lourie O (2006) Appl Phys Lett 88:123101

    Article  Google Scholar 

  15. Bando Y, Mitome M, Golberg D, Kitami Y, Kurashima K, Kaneyama T, Okura Y, Naruse M (2001) J Jpn Appl Phys 40:L1193

    Article  CAS  Google Scholar 

  16. “Nanofactory Instruments AB”, https://doi.org/www.nanofactory.com/, as on 9/8/2007

  17. Bonasewicz P, Hirschwald W, Neumann G (1987) Appl Surf Sci 28:135

    Article  CAS  Google Scholar 

  18. Coppa BJ, Fulton CC, Kiesel SM, Davis RF, Pandarinath C, Burnette JE, Nemanich RJ, Smith DJ (2005) J Appl Phys 97:103517

    Article  Google Scholar 

  19. Wang ZL, Kong XY, Zuo JM (2003) Phys Rev Lett 91:185502

    Article  CAS  Google Scholar 

  20. Reimer L (1989) Transmission electron microscopy. Springer, Berlin

    Book  Google Scholar 

  21. Zhang ZY, Jin CH, Liang XL, Chen Q, Peng L-M (2006) Appl Phys Lett 88:073102

    Article  Google Scholar 

  22. “NIMS Nanotubes Group”, https://doi.org/www.nims.go.jp/nanotube/JMatScience2007.html, as on 15 August 2007

  23. Yoshiie T, Iwanaga H, Shibata N, Ichihara M, Takeuchi S (1979) Philos Mag 40:297

    Article  CAS  Google Scholar 

  24. Devenish R, Bullough T, Turner P, Humphreys C (1990) Inst Phys Conf Ser 98:215

    Google Scholar 

  25. Amelinckx S, Dyck DV, Landuyt JV, Tendeloo GV (1997) Electron microscopy – principles and fundamentals. VCH, Weinheim

    Book  Google Scholar 

  26. Wilkinson J, Ucer KB, Williams RT (2004) Radiat Measure 38:501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Yoichiro Uemura and Mr Keiji Kurashima for technical assistance. Dr Ujjal K. Gautam is thanked for useful discussions. Dr Oleg Lourie, from Nanofactory Instruments AB, is acknowledged for his continuous support. We are indebted to Prof. J. M. Zuo for the use of WebEMAPS (https://doi.org/emaps.mrl.uiuc.edu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. F. J. Costa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, P.M.F.J., Golberg, D., Shen, G. et al. ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. J Mater Sci 43, 1460–1470 (2008). https://doi.org/10.1007/s10853-007-2307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2307-1

Keywords

Navigation