Journal of Materials Science

, Volume 43, Issue 4, pp 1376–1381 | Cite as

Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water

  • Meng ZhangEmail author
  • Yonggai Hou
  • Guojin Yan


Mesoporous carbons were prepared by treating waste polyethylene film in supercritical water at 550 °C. High-resolution transmission electron microscopy images reveal that the pore wall has a thickness of 3–4 nm and is composed of discontinuous graphitic layers, which are parallel to the tangent direction of the mesopore. Electrochemical measurements show the discharging capacity of mesoporous carbon is up to 348 mAh/g (corresponding to 1.3 wt% hydrogen storage). When temperature is lower than 450 °C, only carbon nanofibers were obtained; on the other hand, if reaction temperature is higher than 650 °C, carbon nanotubes are the main products. The possible conversion mechanism from polyethylene to mesoporous carbons and other carbon materials is tentatively discussed.


MoS2 Hydrogen Storage Mesoporous Carbon Carbon Nanofibers Supercritical Water 



This work was supported by the Doctor Foundation of Henan University of Technology.


  1. 1.
    Peacock AJ, Peacock P (2003) Handbook of polyethylene: structures, properties, and applications. Marcel Dekker, New York, p 27Google Scholar
  2. 2.
    Hakkarainen M, Albertsson AC (2004) Adv Polym Sci 169:177CrossRefGoogle Scholar
  3. 3.
    Garforth AA, Ali S, Hernandez-Martinez J, Akah A (2004) Curr Opin Solid State Mater Sci 8:419CrossRefGoogle Scholar
  4. 4.
    Gugumus F (1999) Polym Degrad Stab 66:161CrossRefGoogle Scholar
  5. 5.
    Pinto F, Costa P, Gulyurtlu I, Cabrita I (1999) J Anal Appl Pyrolysis 51:57CrossRefGoogle Scholar
  6. 6.
    Gugumus F (2005) Polym Degrad Stab 90:53CrossRefGoogle Scholar
  7. 7.
    Kelly CT, White JR (1997) Polym Degrad Stab 56:367CrossRefGoogle Scholar
  8. 8.
    Jin CQ, Christensen PA, Egerton TA, Lawson EJ, White JR (2006) Polym Degrad Stab 91:1086CrossRefGoogle Scholar
  9. 9.
    Zheng Y, Yanful EK, Bassi AS (2005) Crit Rev Biotechnol 25:243CrossRefGoogle Scholar
  10. 10.
    Savage PE (1999) Chem Rev 99:603CrossRefGoogle Scholar
  11. 11.
    Desimone JM (2002) Science 297:799CrossRefGoogle Scholar
  12. 12.
    Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Science 297:807CrossRefGoogle Scholar
  13. 13.
    Zhang HF, Su XL, Sun DK, Zhang R, Bi JC (2007) J Fuel Chem Technol 35:487CrossRefGoogle Scholar
  14. 14.
    Kwak H, Shin HY, Bae SY, Kumazawa H (2006) J Appl Polym Sci 101:695CrossRefGoogle Scholar
  15. 15.
    Goto M, Sasaki M, Hirose T (2006) J Mater Sci 41:1509CrossRefGoogle Scholar
  16. 16.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  17. 17.
    Taguchi A, Smatt JH, Linden M (2003) Adv Mater 15:1209CrossRefGoogle Scholar
  18. 18.
    Sakintuna B, Yurum Y (2005) Ind Eng Chem Res 44:2893CrossRefGoogle Scholar
  19. 19.
    Chai GS, Yoon SB, Kim JH, Yu JS (2004) Chem Commun 2766Google Scholar
  20. 20.
    Su FB, Zeng JH, Bao XY, Yu YS, Lee JY, Zhao XS (2005) Chem Mater 17:3960CrossRefGoogle Scholar
  21. 21.
    Samant PV, Pereira MFR, Figueiredo JL (2005) Catal Today 102:183CrossRefGoogle Scholar
  22. 22.
    ltekova NA, Berek D, Novak I, Belliardo F (2000) Carbon 38:373CrossRefGoogle Scholar
  23. 23.
    Hartmann M, Vinu A, Chandrasekar G (2005) Chem Mater 17:829CrossRefGoogle Scholar
  24. 24.
    Hartmann M (2005) Chem Mater 17:4577CrossRefGoogle Scholar
  25. 25.
    Vartapetyan RS, Voloshchuk AM, Buryak AK, Artamonova CD, Belford RL, Ceroke PJ et al (2005) Carbon 43:2152CrossRefGoogle Scholar
  26. 26.
    Pyun SI, Rhee CK (2004) Electrochim Acta 49:4171CrossRefGoogle Scholar
  27. 27.
    Wang DW, Li F, Fang HT, Liu M, Lu GQ, Cheng HM (2006) J Phys Chem B 110:8570CrossRefGoogle Scholar
  28. 28.
    Hynek S, Fuller W, Bentley J (1997) Int J Hydrogen Energy 22:601CrossRefGoogle Scholar
  29. 29.
    Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Beguin F (2005) Carbon 43:1293CrossRefGoogle Scholar
  30. 30.
    Fang BZ, Zhou HS, Honma I (2006) J Phys Chem B 110:4875CrossRefGoogle Scholar
  31. 31.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743CrossRefGoogle Scholar
  32. 32.
    Li ZL, Zhang J, Li Y, Guan YJ, Feng ZC, Li C (2006) J Mater Chem 16:1350CrossRefGoogle Scholar
  33. 33.
    Fuertes AB (2004) Microporous Mesoporous Mater 67:273CrossRefGoogle Scholar
  34. 34.
    Cott DJ, Petkov N, Morris MA, Platschek B, Bein T, Holmes JD (2006) J Am Chem Soc 128:3920CrossRefGoogle Scholar
  35. 35.
    Jawhari T, Roid A, Casado J (1995) Carbon 33:1561CrossRefGoogle Scholar
  36. 36.
    Yang XG, Li C, Wang W, Yang BJ, Zhang SY, Qian YT (2004) Chem Commun 342Google Scholar
  37. 37.
    Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA et al (1997) Science 275:187CrossRefGoogle Scholar
  38. 38.
    Moriya T, Enomoto H (1999) Polym Degrad Stab 65:373CrossRefGoogle Scholar
  39. 39.
    Zhou K, Sun KW (2005) Recycling Res 6:12Google Scholar
  40. 40.
    Lee SM, An KH, Lee YH, Seifert G, Frauenheim T (2001) J Am Chem Soc 123:5059CrossRefGoogle Scholar
  41. 41.
    Zhang B, Ye XC, Dai W, Hou WY, Xie Y (2006) Chem Eur J 12:2337CrossRefGoogle Scholar
  42. 42.
    Yu JX, Wang L, Wang YD, Dong H, Yang HX (2004) J Electrochem Soc 151:A1124CrossRefGoogle Scholar
  43. 43.
    Cao YL, Zhou WC, Li XY, Ai XP, Gao XP, Yang HX (2006) Electrochim Acta 51:4285CrossRefGoogle Scholar
  44. 44.
    Chen J, Kuriyama N, Yuan H, Takeshita HT, Sakai T (2001) J Am Chem Soc 123:11813CrossRefGoogle Scholar
  45. 45.
    Zhang B, Dai W, Ye XC, Hou WY, Xie Y (2005) J Phys Chem B 109:22830CrossRefGoogle Scholar
  46. 46.
    Chen X, Zhang Y, Gao XP, Pan GL, Jiang XY, Qu JQ et al (2004) Int J Hydrogen Energy 29:743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of TechnologyZhengzhouP.R. China

Personalised recommendations