Skip to main content
Log in

Kirchhoff transformation analysis for determining time/depth dependent chloride diffusion coefficient in concrete

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article uses the Kirchhoff transformation method to solve a non-steady one-dimensional diffusion equation when the apparent diffusion coefficient is expressed as a function of time, depth, and concentration of chloride for concrete exposed to chloride environment. The analytical results obtained by the proposed method, which are coincided with those calculated from the Boltzmann–Matano methodology under specific condition, can be used to conveniently predict the chloride diffusion process physically and chemically so that the traditional natural diffusion test to obtain time/depth dependent apparent diffusion coefficient may be greatly simplified. Two new simplified methods to effectively process the experimental results from the natural diffusion test are proposed: one is called the long-specimen-at-one-specific-time method using fewer specimens at one time and the other the short-specimen-at-long-elapsed-time method using more specimens at various service times. Two numerical examples are provided to illustrate the application of these two proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kropp J, Hilsdorf HK (1995) In: Performance criteria for concrete durability. E& FN Spon, London

  2. Truc O, Ollivier JP, Carcassès M (2000) Cem Concr Res 30(2):217

    Article  CAS  Google Scholar 

  3. Tang L, Nilsson LO (1992) ACI Mater J 89:49

    CAS  Google Scholar 

  4. Castellote M, Andrade C, Alonso C (1999) Mater Struct 32:180

    Article  CAS  Google Scholar 

  5. Friedmann H, Amiri O, Aït-Mokhtar A, Dumargue P (2004) Cem Concr Res 34:1967

    Article  CAS  Google Scholar 

  6. Dhir RK, Jones MR, Ahmed HEH, Seneviratne AMG (1990) Mag Concr Res 42(152):177

    Article  CAS  Google Scholar 

  7. Castellote M, Andrade C, Alonso C (1999) Cem Concr Res 29(11):1799

    Article  CAS  Google Scholar 

  8. Andrade C, Sanjuán MA, Recuero A, Río O (1994) Cem Concr Res 24(7):1214

    Article  CAS  Google Scholar 

  9. Stanish K, Thomas M (2003) Cem Concr Res 33:55

    Article  CAS  Google Scholar 

  10. Tumidajski PJ, Chan GW, Feldman RF, Strathdee G (1995) Cem Concr Res 25(7):1556

    Article  CAS  Google Scholar 

  11. Černý R, Pavlík Z, Rovnaníková P (2004) Cem Concr Compos 26:705

    Article  Google Scholar 

  12. Dhir RK, Jones MR, Ng SLD (1998) Mag Concr Res 50(1):37

    Article  CAS  Google Scholar 

  13. Midgley HG, Illston JM (1984) Cem Concr Res 14:546

    Article  CAS  Google Scholar 

  14. Maage M, Helland S, Poulsen E, Vennesland Ø, Carlsen JE (1996) ACI Mater J 93-M68:602

    Google Scholar 

  15. Zhang T, Gjørv OE (2005) ACI Mater J 102-M33:295

    Google Scholar 

  16. Dhir RK, El-Mohr MAK, Dyer TD (1997) Cem Concr Res 27(11):1633

    Article  CAS  Google Scholar 

  17. Baroghel Bouny V, Chaussadent T, Raharinaivo A (1995) In: Nilsson LO, Ollivier JP (eds) Chloride penetration into concrete. RILEM, France, p 290

    Google Scholar 

  18. Tang L (1999) Cem Concr Res 29:1463

    Article  CAS  Google Scholar 

  19. Tang L (1999) Cem Concr Res 29:1469

    Article  CAS  Google Scholar 

  20. Tang L, Gulikers J (2007) Cem Concr Res 37:589

    Article  CAS  Google Scholar 

  21. Brebbia CA, Telles JC, Wrobl LC (1984) In: Boundary element techniques: theory and application engineering. Springer-Verlag, New York

  22. Kane JH (1994) In: Boundary element analysis: in engineering continuous mechanism. Prentice Hall, Englewood

  23. Gebhart B (1993) In: Heat conduction and mass diffusion. McGraw-Hill Inc, New York, p 19, 28

  24. O’Neil PV (2003) In: Advanced engineering mathematics, 5th edn. Brooks/Cole-Thomson Learning Inc., CA

  25. Wolfram Research (1999) In: Mathematica user manual, version 4.0. Trade Center Drive, Champaign, IL 61820-7237, USA

  26. Carslaw HS, Jaeger JC (1959) In: Conduction of heat in solids, 2nd edn. Oxford University Press, New York

  27. Maage M, Helland S, Poulsen E, Vennesland Ǿ, Carlsen JE (1996) ACI Mater J 93(6):602

    CAS  Google Scholar 

  28. Tumidajski PJ, Chan GW (1996) Cem Concr Res 26(4):551

    Article  CAS  Google Scholar 

  29. Liang MT, Lan JJ (2003) J Chin Inst Eng 26(5):647

    Article  Google Scholar 

  30. Liang MT, Lin SM (2003) Cem Concr Res 33:1917

    Article  CAS  Google Scholar 

  31. Liang MT, Jin WL, Yang RJ, Huang NM (2005) Cem Concr Res 35:1827

    Article  CAS  Google Scholar 

  32. Nokken M, Boddy A, Hooton RD, Thomas MDA (2006) Cem Concr Res 36:200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Peng Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YM., Chang, TP. & Liang, MT. Kirchhoff transformation analysis for determining time/depth dependent chloride diffusion coefficient in concrete. J Mater Sci 43, 1429–1437 (2008). https://doi.org/10.1007/s10853-007-2304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2304-4

Keywords

Navigation