Skip to main content
Log in

Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comparative study of thermal and thermal-oxidative degradation processes for polyethylene/organically modified montmorillonite (PE-MMT) nanocomposites, prepared by the ethylene intercalative polymerization in situ with or without subsequent addition of an antioxidant is reported. The results of TGA and time/temperature-dependent FTIR spectroscopy experiments have provided evidence for an accelerated formation and decomposition of hydroperoxides during the thermal oxidative degradation tests of PE-MMT nanocomposites in the range of 170–200 °C as compared to the unfilled PE, thus indicating to a catalytic action of MMT. It has been shown that effective formation of intermolecular chemical cross-links in the PE-MMT nanocomposite has ensued above 200 °C as the result of recombination reactions involving the radical products of hydroperoxides decomposition. Apparently, this process is induced by the oxygen deficiency in PE-MMT nanocomposite due to its lowered oxygen permeability. It is shown that the intermolecular cross-linking and dehydrogenation reactions followed by the shear carbonization lead to appreciable increase of thermal-oxidative stability of PE nanocomposite, as compared to that of pristine PE. Notably, the TGA traces for the antioxidant-stabilized PE-MMT nanocomposites recorded in air were quite similar to those obtainable for the non-stabilized PE-MMT nanocomposites in argon. The results of treatment of the experimentally acquired TGA data in frames of an advanced model kinetic analysis are reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 4

Similar content being viewed by others

References

  1. Messersmith PB, Giannelis EP (1993) Chem Mater 5:1064

    Article  CAS  Google Scholar 

  2. Zanetti M, Lomakin S, Camino G (2000) Macromol Mater Eng 279:1

    Article  CAS  Google Scholar 

  3. Alexandre M, Dubois P (2000) Mater Sci Eng R 28:1

    Article  Google Scholar 

  4. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  5. Oya A (2000) In: Pinnavaia TJ, Beall GW (eds) Polymer clay nanocomposites. Wiley, London

    Google Scholar 

  6. Gilman JW, Kashiwagi T, Nyden M, Brown JET, Jackson CL, Lomakin SM, Gianellis EP, Manias E (1998) In: Al-Maliaka S, Golovoy A, Wilkie CA (eds) Chemistry and technology of polymer additives. Blackwell Scientific, London, p 249

    Google Scholar 

  7. Lomakin SM, Dubnikova IL, Berezina SM, Zaikov GE (2005) Polym Int 54(7):999

    Article  CAS  Google Scholar 

  8. Lomakin SM, Zaikov GE (2003) Modern polymer flame retardancy. VSP Int. Sci. Publ. Utrecht, Boston, p 272

    Google Scholar 

  9. Gilman JW (1999) Appl Clay Sci 15:31

    Article  CAS  Google Scholar 

  10. Gilman GW, Jackson CL, Morgan AB, Harris RH, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips S (2000) Chem Mater 12:1866

    Article  CAS  Google Scholar 

  11. Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Polymer 45:881

    Article  CAS  Google Scholar 

  12. Kovaleva NYu, Brevnov PN, Grinev VG, Kuznetsov SP, Pozdnyakova IV, Chvalun SN, Sinevich EA, Novokshonova LA (2004) Polym Sci Ser A 46(6):651

    Google Scholar 

  13. Voigt J (1966) Die Stabilisierung der Kunstoffe Gegen Licht und Wärme. Springer-Verlag, Berlin, p 542

    Book  Google Scholar 

  14. Shchegolikhin AN, Lazareva OL (1997) Int J Vib Spect (www.ijvs.com) 1(4):95

    Google Scholar 

  15. Lacey DJ, Dudler V (1996) Polym Degrad Stab 51:1011

    Google Scholar 

  16. Paabo M, Levin BC (1987) Fire Mater 11:55

    Article  CAS  Google Scholar 

  17. Lattimer RP (1995) J Anal Appl Pyrolysis 31:203

    Article  CAS  Google Scholar 

  18. Kuroki T, Sawaguchi T, Niikuni S, Ikemura T (1982) Macromolecules 15:1460

    Article  CAS  Google Scholar 

  19. Kiran E, Gillham JK (1976) J Anal Appl Pyrolysis 20:2045–2068

    CAS  Google Scholar 

  20. Blazso M (1993) J Anal Appl Pyrolysis 25:25

    Article  CAS  Google Scholar 

  21. Hornung U, Hornung A, Bockhorn H (1998) Chem Ing Tech 70:45

    Google Scholar 

  22. Hornung U, Hornung A, Bockhorn H (1998) Chem Eng Technol 21:332–337

    Article  CAS  Google Scholar 

  23. Bockhorn H, Hornung A, Horung U (1998) J Anal Appl Pyrolysis 46:1

    Article  CAS  Google Scholar 

  24. Opfermann J (2000) J Thermal Anal Cal 60:641

    Article  CAS  Google Scholar 

  25. Friedman HL (1965) J Polym Sci C6:175

    Google Scholar 

  26. Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) J Anal Appl Pyrolysis 48:93

    Article  CAS  Google Scholar 

  27. Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge, p 275

    Google Scholar 

  28. Gugumus F (2000) Polym Degrad Stab 69:23

    Article  CAS  Google Scholar 

  29. Lacoste L, Carlsson DJ (1992) J Polym Sci Part A Polym Chem 30:493

    Article  CAS  Google Scholar 

  30. Gugumus F (2002) Polym Degrad Stab 76(2):329

    Article  CAS  Google Scholar 

  31. Gugumus F (2002) Polym Degrad Stab 77(1):147

    Article  CAS  Google Scholar 

  32. Benson SW (1976) Thermochemical kinetics. Wiley, New York, p 114

    Google Scholar 

  33. Zaragoza DF (2000) Organic synthesis on solid phase. Wiley, New York

    Google Scholar 

  34. Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia R (2001) Chem Mater 13:2980

    Google Scholar 

  35. Yablokov VA (1980) Russ Chem Rev 49:833

    Article  Google Scholar 

  36. Plesnicar B (1983) In: Patai S (ed) The chemistry of functional groups, peroxides. Wiley, New York, p 521

    Google Scholar 

  37. Bugajny M, Bourbigot S, Bras ML, Delobel R (1999) Polym Int 48:264

    Article  CAS  Google Scholar 

  38. Xie RC, Qu BJ, Hu KL (2001) Polym Degrad Stab 72:313

    Article  CAS  Google Scholar 

  39. Serratosa JM, Bradlay WF (1958) J Phys Chem 62:1164

    Article  CAS  Google Scholar 

  40. Zanetti M, Bracco P, Costa L (2004) Polym Degrad Stab 85:657

    Article  CAS  Google Scholar 

  41. Morlat S, Mailhot B, Gonzalez D, Gardette S (2004) J Chem Mater 16:377

    Article  CAS  Google Scholar 

  42. Desai SM, Pandey JK, Singh RP (2001) Macromol Symp 169:121

    Article  CAS  Google Scholar 

  43. Brown DW, Floyd AJ, Sainsbury M (1988) Organic spectroscopy. Wiley

Download references

Acknowledgements

This work is supported by Russian Foundation for Basic Research (Grant No. 06-03-08047) and Federal Agency on Science and Innovations (Contract No. 02.513.11.3161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Modestovich Lomakin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomakin, S.M., Novokshonova, L.A., Brevnov, P.N. et al. Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization. J Mater Sci 43, 1340–1353 (2008). https://doi.org/10.1007/s10853-007-2295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2295-1

Keywords

Navigation