Journal of Materials Science

, Volume 43, Issue 11, pp 3825–3831 | Cite as

Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa

  • Markus E. GrunerEmail author
  • Peter Entel
  • Ingo Opahle
  • Manuel Richter
Intergranular and Interphase Boundaries in Materials


Magnetic shape memory (MSM) alloys, which transform martensitically below the Curie temperature in the ferromagnetic (FM) state, represent a new class of actuators. In Ni2MnGa, unusually large magnetic field-induced strains of about 10% have been observed. This effect is related to a high mobility of martensitic twin boundaries in connection with a large magneto-crystalline anisotropy. MSM materials exist in a variety of different martensitic structures depending on temperature and compositions. We investigate the energetics of L10 phase twin boundary motion quasi-statically with ab initio methods and relate the results to calculations of the magneto-crystalline anisotropy energy. Our results indicate that for the L10 structure the energy needed for a coherent shift of a twin boundary may be too large to be overcome solely by magnetic field-induced strains.


Twin Boundary Martensitic Variant Orbital Moment Local Spin Density Approximation Hard Axis 



We would like to thank U. K. Rößler for helpful discussions and a careful proofreading of the manuscript. Large parts of the calculations were performed on the IBM Blue Gene/L supercomputer of the John von Neumann Institute for Computing at Forschungszentrum Jülich, Germany. We thank the local staff for their support and Dr Pascal Vezolle of IBM for his efforts in optimizing the VASP binary for the Blue Gene/L architecture. The atomistic visualizations in Fig. 5 were prepared using XCrySDen [28]. Financial support was granted by the Deutsche Forschungsgemeinschaft through the Priority Programme SPP1239, Change of microstructure and shape of solid materials by external magnetic fields.


  1. 1.
    Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966CrossRefGoogle Scholar
  2. 2.
    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746CrossRefGoogle Scholar
  3. 3.
    Söderberg O, Ge Y, Sozinov A, Hannula S-P, Lindroos VV (2005) Smart Mater Struct 14:223CrossRefGoogle Scholar
  4. 4.
    Entel P, Buchelnikov VD, Khovailo VV, Zayak AT, Adeagbo WA, Gruner ME, Herper HC, Wassermann EF (2006) J Phys D: Appl Phys 39:865CrossRefGoogle Scholar
  5. 5.
    Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2006) Phys Rev B 73:174413CrossRefGoogle Scholar
  6. 6.
    Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Phys Rev B 75:104414CrossRefGoogle Scholar
  7. 7.
    Chernenko V, Segui C, Cesari E, Pons J, Kokorin V (1998) Phys Rev B 57:2659CrossRefGoogle Scholar
  8. 8.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  9. 9.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  10. 10.
    Perdew JP, Burke K, Ernzerhoff M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  11. 11.
    Koepernik K, Eschrig H (1999) Phys Rev B 59:1743CrossRefGoogle Scholar
  12. 12.
    Opahle I, Koepernik K, Eschrig H (1999) Phys Rev B 60:14035CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Eschrig H, Richter M, Opahle I (2004) In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part II. Applications, Vol. 14 of theoretical and computational chemistry, Elsevier, pp 723–776Google Scholar
  15. 15.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  16. 16.
    Enkovaara J, Ayuela A, Nordström L, Nieminen RM (2002) Phys Rev B 65:134422CrossRefGoogle Scholar
  17. 17.
    Ayuela A, Enkovaara J, Nieminen RM (2002) J Phys: Condens Matter 14:5325Google Scholar
  18. 18.
    Zayak A, Entel P, Hafner J (2003) J Phys IV 112:985Google Scholar
  19. 19.
    James RD, Hane KF (2000) Acta Mater 48:197CrossRefGoogle Scholar
  20. 20.
    Bhattacharya K (2003) Microstructure of martensite—why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Pitteri M, Zanzotto G (2003) Continuum models for phase transitions and twinning in crystals. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  22. 22.
    Ball JM, James RD (1987) Arch Rat Mech Anal 100:13CrossRefGoogle Scholar
  23. 23.
    Bain EC (1926) Trans AIME 70:25Google Scholar
  24. 24.
    Pond RC, Celotto S (2003) Int Mater Rev 48:225CrossRefGoogle Scholar
  25. 25.
    Kakeshita T, Fukuda T, Takeuchi T (2006) Mater Sci Eng A 438–440:12CrossRefGoogle Scholar
  26. 26.
    Okamoto N, Fukuda T, Kakeshita T, Takeuchi T (2006) Mater Sci Eng A 438–440:948CrossRefGoogle Scholar
  27. 27.
    Kakeshita T, Fukuda T (2006) Int J Appl Electrom 23:45Google Scholar
  28. 28.
    Kokalj A (2003) Comp Mater Sci 28:155; CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Markus E. Gruner
    • 1
    Email author
  • Peter Entel
    • 1
  • Ingo Opahle
    • 2
  • Manuel Richter
    • 2
  1. 1.Physics DepartmentUniversity of Duisburg-EssenDuisburgGermany
  2. 2.IFW DresdenDresdenGermany

Personalised recommendations