Skip to main content
Log in

PET recycled and processed from flakes with different amount of water uptake: characterization by DSC, TG, and FTIR-ATR

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recycled PET from bottles was processed from flakes, which containing different amounts of water uptake. After this process, they are subjected to characterization by differential scanning calorimetry (DSC), thermogravimetry (TG), and Fourier-transform infrared spectroscopy with an attenuated total reflectance accessory (FTIR-ATR). From the DSC and TG results it can be postulate an increase in the proportion of short-molecular-weight distribution in the PET chains, due to the hydrolytic degradation of recycled PET during the thermopressing in presence of water. This hydrolytic degradation probably formed more polar groups on the surface of the processed and recycled PET, like carboxyl groups, as observed by FTIR-ATR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. https://doi.org/www.abepet.com.br/reciclagem, accessed on February 6, 2007

  2. https://doi.org/www.cempre.org.br, accessed on February 6, 2007

  3. La Mantia FP, Vinci M (1994) Polym Degrad Stab 45(1):121

    Article  CAS  Google Scholar 

  4. Torres N, Robin JJ, Boutevin B (2000) Eur Polym J 36(10):2075

    Article  CAS  Google Scholar 

  5. Spinacé da Silva MA, Paoli de MA (2005) Química Nova 28(1):65

    Article  Google Scholar 

  6. Brasil. Agência Nacional de Vigilância Sanitária. Resolução n° 105 – Diário Oficial da República Federativa do Brasil, Seção 1, 21, Brasília-DF, 20 maio (1999). Availabe at: https://doi.org/www.anvisa.gov.br, accessed on September 15, 2006

  7. Yoshioka T, Okayama N, Okuwaki A (1998) Ind Eng Chem Res 37(2):336

    Article  CAS  Google Scholar 

  8. Yoshioka T, Motoki T, Okuwaki A (2001) Ind Eng Chem Res 40(1):75

    Article  CAS  Google Scholar 

  9. Mancini SD, Zanin M (2002) Polím: Ciên Tecnol 12(1):34

    Article  CAS  Google Scholar 

  10. Kao C-Y, Wan B-Z, Cheng W-H (1998) Ind Eng Chem Res 37(4):1228

    Article  CAS  Google Scholar 

  11. Wan B-Z, Kao C-Y, Cheng W-H (2001) Ind Eng Chem Res 40(2):509

    Article  CAS  Google Scholar 

  12. Mishra S, Goje AS (2003) Polym React Eng 11(4):963

    Article  CAS  Google Scholar 

  13. Yang Y, Lu Y, Xiang H, Xu Y, Li Y (2002) Polym Degrad Stab 75(1):185

    Article  CAS  Google Scholar 

  14. Genta M, Iwaya T, Sasaki M, Goto M, Hirose T (2005) Ind Eng Chem Res 44(11):3894

    Article  CAS  Google Scholar 

  15. Castro REN, Vidotti GJ, Rubira AF, Muniz EC (2006) J Appl Polym Sci 101(3):2009

    Article  Google Scholar 

  16. Hu L-C, Oku A, Yamada E (1997) Polym J 29(9):708

    Article  CAS  Google Scholar 

  17. Goje AS, Thakur SA, Patil TM, Mishra S (2003) J Appl Polym Sci 90(12):3437

    Article  CAS  Google Scholar 

  18. Goje AS, Chauhan YP, Mishra S (2004) Polym-Plast Technol Eng 43(1):95

    Article  CAS  Google Scholar 

  19. Villain F, Coudane J, Vert M (1994) Polym Degrad Stab 43(3):431

    Article  CAS  Google Scholar 

  20. Ruvolo-Filho A, Carvalho de GM (1999) J Macromol Sci − Phys B 38(3):305

    Article  Google Scholar 

  21. Edge M, Wiles R, Allen NS, Mcdonald WA, Mortlock SV (1996) Polym Degrad Stab 53(2):141

    Article  CAS  Google Scholar 

  22. Dzieciol M, Trzeszczynski J (1998) J Appl Polym Sci 69(12):2377

    Article  CAS  Google Scholar 

  23. Campanelli JR, Kamal MR, Cooper DG (1993) J Appl Polym Sci 48(3):443

    Article  CAS  Google Scholar 

  24. Ruvolo-Filho AC, Soares K (2004) BR Patent, PI 0400074-9, 2004

  25. Ruvolo-Filho A, Curti PS (2006) Ind Eng Chem Res 45(24):7985

    Article  CAS  Google Scholar 

  26. Curti PS, Ruvolo-Filho A (2006) Polím Ciênc Tecnol 26(4):276

    Article  Google Scholar 

  27. Oku A, Hu L-C, Yamada E (1997) J Appl Polym Sci 63(5):595

    Article  CAS  Google Scholar 

  28. Goje AS, Mishra S (2003) Macromol Mat Eng 288(4):326

    Article  CAS  Google Scholar 

  29. Kumar S, Guria C (2005) J Macromol Sci Part A: Pure Appl Chem 42(3):237

    Article  Google Scholar 

  30. Carvalho de GM (2000) Correlação entre comportamento térmico, espessura, propriedades de transporte e a morfologia em filmes de poli(etileno tereftalato). Tese de doutorado, Universidade Federal de São Carlos, SP, Brasil

    Google Scholar 

  31. Standard Test Method for Decomposition Kinetics by Thermogravimetry. Método E 1641-99 (ASTM)

  32. Sammon C, Yarwood J, Everall N (2000) Polym Degrad Stab 67(1):149

    Article  CAS  Google Scholar 

  33. Khanna YP, Kuhn WP (1997) J Polym Sci – Part B: Polym Phys 35(14):2219

    Article  CAS  Google Scholar 

  34. Operation Manual for TGA 2050-TA Instruments

  35. Hatakeyama T, Quinn FX (1995) Thermal analysis – fundamentals and applications to polymer science. Wiley, New York

    Google Scholar 

  36. Arii T, Ichihara S, Nakagawa H, Fujii N (1998) Thermochim Acta 319(1–2):139

    Article  CAS  Google Scholar 

  37. Saha B, Ghoshal AK (2005) Chem Eng J 111(1):39

    Article  CAS  Google Scholar 

  38. Saha B, Maiti AK, Ghoshal AK (2006) Thermochim Acta 444(1):46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhemar Ruvolo-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruvolo-Filho, A., Curti, P.S. PET recycled and processed from flakes with different amount of water uptake: characterization by DSC, TG, and FTIR-ATR. J Mater Sci 43, 1406–1420 (2008). https://doi.org/10.1007/s10853-007-2282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2282-6

Keywords

Navigation