Skip to main content
Log in

Conductive polymer preparation under extreme or non-classical conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) emeraldine salt form and PANI/silver composites have been synthesized by sonochemical and ionizing radiation methods. These composite materials were obtained through sonication and γ irradiation of an aqueous solution of aniline and silver nitrate, in room temperature, respectively. The mechanisms suggested to explain the formation of these products are based on the fact that both methods produce hydroxyl radical OH and hydrogen radical H, where hydroxyl radical OH acts as an oxidizing agent in the polymerization process of aniline monomer; and hydrogen radical H, as a reducing agent for silver ions. Spectroscopic, X-ray, and SEM measures show that PANI and silver nano particles of 40 nm average diameter are produced with ultrasonic methods, whereas silver nano particles of 60 nm average, and fibrillar, highly network morphology for PANI with 60 nm fibrillar diameter average are obtained using γ radiation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Eldik R, Hubbard CD (1996) Chemistry under extreme or non classical conditions. Wiley, New York

    Google Scholar 

  2. Lindstrom O, Lamm O (1951) J Phys Colloid Chem 55(7):1139

    Article  CAS  Google Scholar 

  3. Price GJ, Norris DJ, West PJ (1992) Macromolecules 25:6447

    Article  CAS  Google Scholar 

  4. Price GJ, Patel AM (1992) Polymer 33:4423

    Article  CAS  Google Scholar 

  5. Peters D (1996) J Mater Chem 6(10):1605

    Article  CAS  Google Scholar 

  6. Suslick KS, Choe SB, Cichowalas AA, Grinstaff MW (1991) Nature 353:414

    Article  CAS  Google Scholar 

  7. Grinstaff MW, Cichowalas AA, Choe SB, Suslick KS (1992) Ultrasonics 30:68

    Article  Google Scholar 

  8. Kruus P (1983) Ultrasonics 21:201

    Article  CAS  Google Scholar 

  9. Wizel S, Prozorov R, Cohen Y, Aurbach D, Margel S, Gedanken A (1998) J Mater Res 13:211

    Article  CAS  Google Scholar 

  10. Wizel S, Margel S, Gedanken A, Rojas TC, Fernandez A, Prozorov R (1999) J Mater Res 14:3913

    Article  CAS  Google Scholar 

  11. Atobe M, Chowdhury AN, Fuchigami T, Nonaka T (2003) Ultrason Sonochem 10:77

    Article  CAS  Google Scholar 

  12. Ryu JG, Kim H, Lee JW (2004) Polym Eng Sci 44:1198

    Article  CAS  Google Scholar 

  13. Xia H.S, Wang Q (2002) Chem Mater 14:2158

    Article  CAS  Google Scholar 

  14. Laranjeiras JMG, Khoury HJ, de Azevedo WM, de Vasconcelos EA, da Silva Jr EF (2003) Mater Charact 50:127

    Article  Google Scholar 

  15. Pacheco APL, Araújo ES, de Azevedo WM (2003) Mater Charact 50:245

    Article  Google Scholar 

  16. Wolszczak M, Kroh J, Abdel-Hamid M (1996) Radiat Phys Chem 47:859

    Article  CAS  Google Scholar 

  17. Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) Chem Mater 17:5941

    Article  CAS  Google Scholar 

  18. de Azevedo WM, de Oliveira Luna AJH, Silva EFVBN, Silva RO (2006) Ultrason Sonochem 13:433

    Article  Google Scholar 

  19. de Azevedo WM, Lima APD, de Araújo ES (1999) Radiat Prot Dosimetry 84:77

    Article  Google Scholar 

  20. Arnold GW, Borders JA (1977) J Appl Phys 48:1488

    Article  CAS  Google Scholar 

  21. Wan M (1989) Synth Met 31:51

    Article  CAS  Google Scholar 

  22. Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Phys Rev Lett 59:464

    Article  Google Scholar 

  23. Zhu YJ, Qian YT, Zhang MW, Chen ZY, Lu B, Wang CS (1993) Mater Lett 17:314

    Article  CAS  Google Scholar 

  24. Inoue M, Navarro RE, Ionoue MB (1989) Synth Met 30:199

    Article  CAS  Google Scholar 

  25. Salaneck WR, Liedberg B, Inganas O, Erlandsson R, Lundstron I, MicDiarmid AG, Halpern M, Somasiri NLD (1985) Mol Cryst Liq Cryst 121:191

    Article  CAS  Google Scholar 

  26. Mu S, Kan J (1998) Synth Met 98:51

    Article  CAS  Google Scholar 

  27. Henglein A (1992) In: Mason TJ (ed) Advances in sonochemistry, vol 3. JAI Press, London, p 1

  28. Kondo T, KinsChenbaum LJ, Kim H, Riesz P (1993) J Phys Chem 97:522

    Article  CAS  Google Scholar 

  29. Langford JI, Wilson AJC (1978) J Appl Cryst 11:102

    Article  CAS  Google Scholar 

  30. Barrett CS, Massalski TB (1966) Struture of the metals. McGraw-Hill, New York, p 155

    Google Scholar 

  31. Wagner CNJ, Aqua EN (1964) Adv X-ray Anal 7:46

    CAS  Google Scholar 

  32. Song W, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 1 82:2385

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Francisco Rangel for his assistance on SEM measurements, Marcela Bianca for comments and suggestions for the manuscript, and acknowledge financial support received during the development of this work from REMAN contract N. 550.015/01-9, CNPQ contract N.305587/2003-0 and N. 473.144/03-4 and RENAMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. de Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Azevedo, W.M., de Barros, R.A. & da Silva, E.F. Conductive polymer preparation under extreme or non-classical conditions. J Mater Sci 43, 1400–1405 (2008). https://doi.org/10.1007/s10853-007-2278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2278-2

Keywords

Navigation