Journal of Materials Science

, Volume 43, Issue 11, pp 3860–3866 | Cite as

Motion of the faceted 57° \( [11\overline{2} 0] \) tilt grain boundary in zinc

  • Vera G. Sursaeva
  • Alena S. Gornakova
  • Viktor P. Yashnikov
  • Boris B. Straumal
Intergranular and Interphase Boundaries in Materials

Abstract

The impact of faceting on the high-angle grain boundary motion was studied. The non-steady-state motion of the 57° \( [11\overline{2} 0] \) tilt grain boundary (GB) half-loop in a Zn bicrystal has been studied in situ. Above 678 K the slowly migrating GB half-loop was continuously curved. Below this temperature moving GB was fully or partially faceted. The transformation of curved GB into a GB facet with increasing temperature was observed for the first time. Overlapping faceting/roughening of three crystallograpically different GB facets lead to the complicated non-steady-state motion. As a result, the GB mobility values and migration enthalpy were not unique, but lay in a certain interval.

Keywords

Grain Boundary Isothermal Annealing Coincidence Site Lattice Arrhenius Dependence Flat Facet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors thank Profs L. S. Shvindlerman, and G. Gottstein for stimulating discussion. The research was supported by the Deutsche Forschungsgemeinschaft (DFG Grant 436 RUS 113/842/0-1(R)) and the Russian Foundation of Basis Research (Grant DFG-RFBR 06-02-04015).

References

  1. 1.
    Hsieh TE, Balluffi RW (1989) Acta Metall 37:2133CrossRefGoogle Scholar
  2. 2.
    Lee SB, Yoon DY, Henry MB (2000) Acta Mater 48:3071CrossRefGoogle Scholar
  3. 3.
    Straumal BB, Polyakov SA, Mittemeijer EJ (2006) Acta Mater 54:167CrossRefGoogle Scholar
  4. 4.
    Lejcek P, Paidar V, Hofmann S (1999) Mater Sci Forum 294:103 CrossRefGoogle Scholar
  5. 5.
    Wolf U, Ernst F, Muschik T, Finnis MW, Fischmeister HF (1992) Phil Mag A 66:991CrossRefGoogle Scholar
  6. 6.
    Straumal BB, Shvindlerman LS (1985) Acta Metall 33:1735CrossRefGoogle Scholar
  7. 7.
    Herring C (1951) Phys Rev 82:87CrossRefGoogle Scholar
  8. 8.
    Kopezky CV, Andreeva AV, Sukhomlin GD (1991) Acta Metall Mater 39:1603CrossRefGoogle Scholar
  9. 9.
    Kiselev AN, Sarrazit F, Stepantsov EA, Olsson E, Claeson T, Bondarenko VI, Pond RC, Kiselev NA (1997) Phil Mag A 76:633CrossRefGoogle Scholar
  10. 10.
    Sarrazit F, Pond RC, Kiselev NA (1998) Phil Mag Lett 77:191CrossRefGoogle Scholar
  11. 11.
    Straumal B, Polyakov S, Bischoff E, Mittemeijer E (2004) Z Metallkd 95:939Google Scholar
  12. 12.
    Straumal BB, Polyakov SA, Chang L-S, Mittemeijer EJ (2007) Int J Mater Res (former Z Metallkd) 98:451Google Scholar
  13. 13.
    Gottsein G, Shvindlerman LS (1999) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Boca Raton, p 467Google Scholar
  14. 14.
    Koo JB, Yoon DY (2001) Metall Mater Trans A 324:69Google Scholar
  15. 15.
    Mendelev MI, Srolovitz DJ, Shvindlerman LS, Gottstein G (2002) Interface Sci 11:234Google Scholar
  16. 16.
    Straumal BB, Sursaeva VG, Polyakov SA (2001) Interface Sci 9:275CrossRefGoogle Scholar
  17. 17.
    Straumal BB, Rabkin E, Sursaeva VG, Gornakova AS (2005) Z Metallkd 96:161Google Scholar
  18. 18.
    Straumal BB, Sursaeva VG, Gornakova AS (2005) Z Metallkd 96:1147Google Scholar
  19. 19.
    Sursaeva VG, Gornakova AS, Straumal BB, Shvindlerman LS, Gottstein G (2008) Acta Mater 56 (in press)Google Scholar
  20. 20.
    Bruggeman GA, Bishop GH, Hart WH (1972) In: Hsun Hu (ed) The nature and behaviour of grain boundaries, Plenum, New York, pp 83–122Google Scholar
  21. 21.
    Nye JF (2004) Physical properties of crystals. Clarendon Press, Oxford, p 329Google Scholar
  22. 22.
    Wulff GV (1895) Isvestia Warsz Univ 7:1; (1896) 9:1 (in Russian)Google Scholar
  23. 23.
    Wulff G (1901) Z Krystallogr 34:449 (in German)Google Scholar
  24. 24.
    Straumal BB (2003) Grain boundary phase transitions. Nauka publishers, Moscow, p 327 (in Russian)Google Scholar
  25. 25.
    Rabkin E (2005) J Mater Sci 40:875CrossRefGoogle Scholar
  26. 26.
    Mullins WW (1956) J Appl Phys 27:900CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vera G. Sursaeva
    • 1
  • Alena S. Gornakova
    • 1
  • Viktor P. Yashnikov
    • 1
  • Boris B. Straumal
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesMoscow districtRussia

Personalised recommendations