Journal of Materials Science

, Volume 43, Issue 2, pp 709–714 | Cite as

A Rosen-type piezoelectric transformer employing lead-free K0.5Na0.5NbO3 ceramics

  • Mingsen GuoEmail author
  • K. H. Lam
  • D. M. Lin
  • S. Wang
  • K. W. Kwok
  • Helen L. W. Chan
  • X. Z. Zhao


Lead-free K0.5Na0.5NbO3–K5.4Cu1.3Ta10O29–MnO2 (KNN–KCT–Mn) ceramics have been prepared by a conventional ceramic sintering technique. The ceramics show excellent piezoelectric properties for application in power devices, and the optimum properties measured are as follows: piezoelectric constant d 33 = 90 pC/N, planar electromechanical coupling factor k p = 0.40, mechanical quality factor Q m = 1900, remanent polarization P r = 11.8 μC/cm2, coercive field E c = 0.85 kV/mm. A Rosen-type piezoelectric transformer with a dimension of 21 mm × 6 mm × 1.2 mm was fabricated using the KNN–KCT–Mn ceramics. Properties of the piezoelectric transformer operating in the first and second modes have been characterized. For the first mode, the transformer has a maximum output power of 0.7 W with a temperature rise of 14 °C. For the second mode, the maximum output power of the transformer is 1.8 W with a temperature rise of 33 °C. KNN–KCT–Mn ceramics have shown to be a potential lead-free candidate to be used in high-voltage–low-current devices.


Load Resistance Maximum Output Power Voltage Gain Electromechanical Coupling Factor Mechanical Quality Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Niche Area Project (No. 1-BB95) and the Centre for Smart Materials of The Hong Kong Polytechnic University.


  1. 1.
    Rosen A, Fish KA, Rothenberg HC (1958) U.S. Patent No. 2830274, 8 April 1958Google Scholar
  2. 2.
    Fuda Y, Kumasaka K, Katsuno M, Sato H, Ino Y (1997) Jpn J Appl Phys Part 1 36:3050CrossRefGoogle Scholar
  3. 3.
    Sasaki Y, Yamamoto M, Ochi A, Inoue T, Takahashi S (1999) Jpn J Appl Phys Part 1 38:5598CrossRefGoogle Scholar
  4. 4.
    Ohnishi O, Kishie H, Iwamoto A, Sasaki Y, Zaitsu T, Inoue T (1992) Proc IEEE Ultrason Symp 1:483CrossRefGoogle Scholar
  5. 5.
    Yamamoto M, Sasaki Y, Ochi A, Inoue T, Hamamura S (2001) Jpn J Appl Phys Part 1 40:3637CrossRefGoogle Scholar
  6. 6.
    Hu JH, Fuda Y, Katsuno M, Yoshida T (1999) Jpn J Appl Phys Part 1 38:3208CrossRefGoogle Scholar
  7. 7.
    Hu JH, Li HL, Helen Chan LW, Choy CL (2001) Sens Actuators A 88:79CrossRefGoogle Scholar
  8. 8.
    Du JL, Hu JH, Tseng KJ (2004) IEEE Trans Ultrason Ferroelectr Freq Control 51:502CrossRefGoogle Scholar
  9. 9.
    Priya S, Kim H, Ural S, Uchino K (2006) IEEE Trans Ultrason Ferroelectr Freq Control 53:810Google Scholar
  10. 10.
    Baker EM, Huang W, Chen DY, Lee FC (2005) IEEE Trans Power Electron 20:1213CrossRefGoogle Scholar
  11. 11.
    Kim SK, Seo YH (2006) Appl Phys Lett 88:263510CrossRefGoogle Scholar
  12. 12.
    Egerton L, Dillom DM (1959) J Am Ceram Soc 42:438CrossRefGoogle Scholar
  13. 13.
    Jaeger RE, Egerton L (1962) J Am Ceram Soc 45:209CrossRefGoogle Scholar
  14. 14.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamur M (2004) Nature (London) 432:84CrossRefGoogle Scholar
  15. 15.
    Guo Y, Kakimoto K, Ohsato H (2004) Appl Phys Lett 85:4121CrossRefGoogle Scholar
  16. 16.
    Kimura M, Ando A, Shiratsuyu K, Sakabe Y (2004) Trans Mater Res Soc Jpn 29:1049Google Scholar
  17. 17.
    Zang GZ, Wang JF, Chen HC, Su WB, Wang CM, Qi P, Ming BQ, Du J, Zheng LM (2006) Appl Phys Lett 88:212908CrossRefGoogle Scholar
  18. 18.
    Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87:182905CrossRefGoogle Scholar
  19. 19.
    Matsubara M, Kikuta K, Hirano S (2005) J Appl Phys 97:114105CrossRefGoogle Scholar
  20. 20.
    Kimura M, Kawada S, Shiratsuyu K, Ando A, Tamura H, Sakabe Y (2004) Key Eng Mater 269:3CrossRefGoogle Scholar
  21. 21.
    Guo Y, Kakimoto K, Ohsato H (2004) Solid State Commun 129:279CrossRefGoogle Scholar
  22. 22.
    Ahn CW, Song HC, Nahm S, Park SH, Uchino K, Priya S, Lee HG, Kang NK (2005) Jpn J Appl Phys Part 1 44:L1361CrossRefGoogle Scholar
  23. 23.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys Part 1 30:2236CrossRefGoogle Scholar
  24. 24.
    Wang X, Tang XG, Chan HLW (2004) Appl Phys Lett 85:91CrossRefGoogle Scholar
  25. 25.
    Lin D, Xiao D, Zhu J, Yu P (2006) Appl Phys Lett 88:062901CrossRefGoogle Scholar
  26. 26.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Jpn J Appl Phys Part 1 38:5564CrossRefGoogle Scholar
  27. 27.
    Jain R, Chauhan AKS, Gupta V, Sreenivas K (2005) J Appl Phys 97:124101CrossRefGoogle Scholar
  28. 28.
    Li W, Gu J, Song C, Su D, Zhu J (2005) J Appl Phys 98:114104CrossRefGoogle Scholar
  29. 29.
    Xie R, Akimune Y, Matsuo K, Sugiyama T, Hirosaki N, Sekiya T (2002) Appl Phys Lett 80:835CrossRefGoogle Scholar
  30. 30.
    Yu Z, Ang C, Guo R, Bhalla AS (2002) J Appl Phys 92:1489CrossRefGoogle Scholar
  31. 31.
    ANSI/IEEE Std. 176–1987 (1987) IEEE standard on piezoelectricity. IEEE, New YorkGoogle Scholar
  32. 32.
    Guo MS, Lin DM, Lam KH, Wang S, Chan HLW, Zhao XZ (2007) Rev Sci Instrum 78:035102CrossRefGoogle Scholar
  33. 33.
    Lin D, Kwok KW, Lam KH, Chan HLW (2007) J Appl Phys 101:074111CrossRefGoogle Scholar
  34. 34.
    Lin D, Kwok KW, Chan HLW (2007) Appl Phys Lett 90:232903CrossRefGoogle Scholar
  35. 35.
    Lin D, Kwok KW, Chan HLW, Structure, dielectric, piezoelectric properties of CuO-doped K0.5Na0.5NbO3–BaTiO3 lead-free ceramics. J Appl Phys doi:  10.1063/1.2787164
  36. 36.
    Lin D, Kwok KW, Chan HLW (2007) Appl Phys A 88:359CrossRefGoogle Scholar
  37. 37.
    Ren X (2004) Nat Mater 3:91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mingsen Guo
    • 2
    • 1
    Email author
  • K. H. Lam
    • 2
  • D. M. Lin
    • 2
  • S. Wang
    • 2
    • 1
  • K. W. Kwok
    • 2
  • Helen L. W. Chan
    • 2
  • X. Z. Zhao
    • 1
  1. 1.Department of PhysicsWuhan UniversityWuhanChina
  2. 2.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityKowloonHong Kong, China

Personalised recommendations