Skip to main content
Log in

Two opposite growth modes of carbon nanofibers prepared by catalytic decomposition of acetylene at low temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Helical carbon fibers were synthesized by the catalytic decomposition of acetylene as carbon source at low temperature of 240–260 °C with two nanocopper catalysts prepared by the hydrogen-arc plasma method and thermal decomposition of copper tartrate. Two growth modes for helical carbon fibers were obtained. One is mirror-symmetric growth mode, and the other is asymmetric growth mode. In the two growth modes, there were always only two helical fibers in regular shapes that were grown over a single copper nanoparticle. The two helical fibers had identical coil diameter, coil length, fiber diameter, cycle number, tight coil pitch, and cross section. In mirror-symmetric growth mode, the two helical fibers had absolutely opposite helical senses. The catalyst particle size was less than 50 nm and the coil diameter was <100 nm. Whereas in asymmetric growth mode, the two helical fibers had absolutely identical helical senses. The catalyst particle size was larger than 200 nm and their coil diameters reached 1 μm. The catalyst particle size had considerable effect on the growth mode for helical carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377

    Article  CAS  Google Scholar 

  2. Koehne J, Chen H, Li J, Cassell AM, Ye Q, Ng HT, Han J, Meyyappan M (2003) Nanotechnology 14:1239

    Article  CAS  Google Scholar 

  3. Qin Y, Zhang ZK, Cui ZL (2003) Carbon 41:3072

    Article  CAS  Google Scholar 

  4. Zhang L, Melechko AV, Merkulov VI, Guillorn MA, Simpson ML, Lowndes DH, Doktycz MJ (2002) Appl Phys Lett 81:135

    Article  CAS  Google Scholar 

  5. De Jong KP, Geus JW (2000) Catal Rev Sci Eng 42:481

    Article  Google Scholar 

  6. Choi WB, Chu JU, Jeong KS, Bae EJ, Lee JW, Kim JJ, Lee JO (2001) Appl Phys Lett 79:3696

    Article  CAS  Google Scholar 

  7. Hirakawa M, Sonoda S, Tanaka C, Murakami H, Yamakawa H (2001) Appl Surf Sci 169–170:662

    Article  Google Scholar 

  8. Baughman RH, Zakhidov AA, Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  9. Collins PG, Avouris P (2000) Sci Am 283:62

    Article  CAS  Google Scholar 

  10. Kong J, Yenilmez E, Tombler TW, Kim W, Liu L, Jayanthi CS, Wu SY, Laughlin RB, Dai H (2001) Phys Rev Lett 87:106801

    Article  CAS  Google Scholar 

  11. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  12. Tanaka A, Yoon S-H, Mochida I (2004) Carbon 42:591

    Article  CAS  Google Scholar 

  13. Chambers A, Rodriguez NM, Baker RTK (1996) J Mater Res 11:430

    Article  CAS  Google Scholar 

  14. Yang S, Chen X, Motojima S (2004) J Mater Sci 39:2727. Doi:10.1023/B:JMSC.0000021447.77992.26

    Google Scholar 

  15. Baker RTK, Harries PS, Terry S (1975) Nature 253:37

    Article  CAS  Google Scholar 

  16. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053

    Article  CAS  Google Scholar 

  17. Gorbunov A, Jost O, Pompe W, Graff A (2002) Appl Surf Sci 197–198:563

    Article  Google Scholar 

  18. Chen D, Christensen KO, Ochoa-Fernández E, Yu ZX, Tøtdal B, Latorre N, Monzón A, Holmen A (2005) J Catal 229:82

    Article  CAS  Google Scholar 

  19. Cui ZL, Zhang ZK (1996) Nanostruct Mater 7:355

    Article  CAS  Google Scholar 

  20. Ermakova MA, Ermakov DY, Kuvshinov GG, Plyasova LM (1999) J Catal 187:77

    Article  CAS  Google Scholar 

  21. Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K (2004) J Phys Chem B 108:11464

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The Natural Science Foundation of Shandong Province supported this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuolin Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Qin, Y., Sui, L. et al. Two opposite growth modes of carbon nanofibers prepared by catalytic decomposition of acetylene at low temperature. J Mater Sci 43, 883–886 (2008). https://doi.org/10.1007/s10853-007-2191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2191-8

Keywords

Navigation