Skip to main content
Log in

Geometrical and physical models of martensitic transformations in ferrous alloys

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The classical theory of the crystallography of martensitic transformations developed in the 1950s is based on the notion that the interface between the parent and product phases is an invariant plane of the shape deformation. Underlying this hypothesis is the expectation that such interfaces do not exhibit long-range strain, and the geometric theory is an algorithm for finding invariant planes, the orientation relationship and transformation displacement. In the context of ferrous alloys, the classical theory has been applied successfully to transformations with {295} habit planes, but is less satisfactory for {575} for example. A new model of martensitic transformations has been presented recently based on dislocation theory, incorporating developments in the understanding of the topological properties of interfacial defects. Topological arguments show that glissile motion of transformation dislocations, or disconnections, can only occur in coherent interphase interfaces. Hence, the interface in the model comprises coherent terraces with a superimposed network of disconnections and crystal dislocations. It is demonstrated explicitly that this defect network accommodates the coherency strains, and that lateral motion of the disconnections across the interface effects transformation in a diffusionless manner. Moreover, it is shown that a broader range of habit planes is predicted on the basis of the semi-coherent interface model than the invariant plane notion. In the case of ferrous alloys, it will be shown that a range of viable solutions arise which include {575}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Christian JW (2002) The theory of transformations in metals and alloys. Pergamon Press, Oxford

    Google Scholar 

  2. Olson GB, Owen WS (eds) (1992) Martensite. ASM International, USA

  3. Wechsler MS, Lieberman DS, Read TA (1953) Trans AIME 197:1503

    Google Scholar 

  4. Bowles JS, MacKenzie JK (1954) Acta Metall 2:129, 138, 224

  5. McDougall PG, Wayman CM (1992) In: Olson GB, Owen WS (eds) Martensite. ASM International, USA, p 59

    Google Scholar 

  6. Pond RC, Celotto S, Hirth JP (2003) Acta Mater 51:5385

    Article  CAS  Google Scholar 

  7. Pond RC, Hirth JP, Ma X, Chai YW (2007) Topological modelling of martensitic transformations. In: Nabarro FRN, Hirth JP (eds) Dislocations in solids, vol. 13. Elsevier, Amsterdam, p 227

    Google Scholar 

  8. Hirth JP (1994) J Phys Chem Sol 55:985

    Article  CAS  Google Scholar 

  9. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  10. Hall MG, Aaronson HI, Kinsman KR (1972) Surf Sci 31:257

  11. Roitburd AL (1976) Solid State Phys 33:317

    Article  Google Scholar 

  12. Dahmen U (1987) Scripta Metall 21:1029

    Article  CAS  Google Scholar 

  13. Smith DA (1987) Scripta Metall 21:1009

    Article  CAS  Google Scholar 

  14. Pond RC, Ma X (2005) Z fur Metal 96:1124

    Article  CAS  Google Scholar 

  15. Crocker AG (1962) Philos Mag 7:1901

    Article  CAS  Google Scholar 

  16. Pond RC (1989) Line defects in interfaces. In: Nabarro FRN (ed) Dislocations in solids, vol. 8. North-Holland, Amsterdam, p 1

    Google Scholar 

  17. Christian JW (1994) Metall Mater Trans 25A:1821

    Article  CAS  Google Scholar 

  18. Bilby BA, Bullough R, Smith E (1955) Proc Roy Soc 231A:263

    Google Scholar 

  19. Ma X, Pond RC (2007) J Nucl Mater 361:313

    Article  CAS  Google Scholar 

  20. Wayman CM (1964) Introduction to the crystallography of martensite transformations. Macmillan, New York

    Google Scholar 

  21. Hammond C, Kelly PM (1969) Acta Metall 17:869

    Article  CAS  Google Scholar 

  22. Hirth JP, Lothe J (1982) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  23. Hirth JP, Pond RC, Lothe J (2006) Acta Mater 54:4237–4245

    Article  CAS  Google Scholar 

  24. Matthews JW (1974) Phil Mag 29:797

    Article  CAS  Google Scholar 

  25. Kurdjumov GV, Sachs G (1930) Z Phys 64:325

    Article  Google Scholar 

  26. Sandvik BPJ, Wayman CM (1983) Metall Trans 14A:835

    Article  Google Scholar 

  27. Kelly PM, Jostsons A, Blake RG (1990) Acta Metal Mater 38:1075

    Article  CAS  Google Scholar 

  28. Pond RC, Celotto S (2003) Int Mater Rev 48:225

    Article  CAS  Google Scholar 

  29. Misra A, Hirth JP, Hoagland RG, Embury JD, Kung H (2004) Acta Mater 52:2387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Pond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pond, R.C., Ma, X. & Hirth, J.P. Geometrical and physical models of martensitic transformations in ferrous alloys. J Mater Sci 43, 3881–3888 (2008). https://doi.org/10.1007/s10853-007-2158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2158-9

Keywords

Navigation