Skip to main content
Log in

Interface layer effect on the stress distribution of a wafer-bonded bilayer structure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interface layer plays an important role in stress transfer in composite structures. However, many interface layer properties such as the modulus, thickness, and uniformity are difficult to determine. The model developed in this article links the influence of the interface layer on the normal stress distribution along the layer thickness with the layer surface morphology before bonding. By doing so, a new method of determining the interfacial parameter(s) is suggested. The effects of the layer thickness and the surface roughness before bonding on the normal stress distribution and its depth profile are also discussed. For ideal interface case with no interfacial shear stress, the normal stress distribution pattern can only be monotonically decreased from the interface. Due to the presence of interfacial shear stress, the normal stress distribution is much more complex, and varies dramatically with changes in the properties of the interface layer, or the dimensions of the bonding layers. The consequence of this dramatic stress field change, such as the shift of the maximum stress from the interface is also addressed. The size-dependent stress distribution in the thickness direction due to the interface layer effect is presented. When the interfacial shear stress is reduced to zero, the model presented in this article is also demonstrated to have the same normal stress distribution as obtained by the previous model, which does not consider the interface layer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pipes RB, Pagano NJ (1970) J Compos Mater 4:538

    Google Scholar 

  2. Pipes RB, Moiré IM (1971) J Compos Mater 5:255

    Article  CAS  Google Scholar 

  3. Pagano NJ (1978) Int J Solids Struct 14:385

    Article  Google Scholar 

  4. Pagano NJ (1978) Int J Solids Struct 14:401

    Article  Google Scholar 

  5. Wang SS, Choi I (1982) J Appl Mech 49:541

    Google Scholar 

  6. Wang SS, Choi I (1982) J Appl Mech 49:549

    Article  Google Scholar 

  7. Hu SM (1979) J Appl Phys 50:4661

    Article  Google Scholar 

  8. Hu SM (1991) J Appl Phys 70:R53

    Article  CAS  Google Scholar 

  9. Chen WT, Nelson CW (1979) IBM J Res Develop 23:179

    Article  Google Scholar 

  10. Suhir E (1986) J Appl Mech 53:657

    Google Scholar 

  11. Suhir E (1989) J Appl Mech 56:595

    Google Scholar 

  12. Timoshenko S (1925) J Opt Soc Am 11:233

    Article  CAS  Google Scholar 

  13. Ru CQ (2002) J Electron Packag 124:141

    Article  Google Scholar 

  14. Noyan IC, Murray CE, Chey JS, Goldsmith CC (2004) Appl Phys Lett 85:724

    Article  CAS  Google Scholar 

  15. Murray CE, Noyan IC (2002) Philos Mag A 82:3087

    CAS  Google Scholar 

  16. Maszara WP, Jiang BL, Yamada A, Rozgonyi GA, Baumgart H, de Kock AJR (1990) J Appl Phys 69:257

    Article  Google Scholar 

  17. Stengl R, Mitani K, Lehmann V, Gösele U (1989) Proc. 1989 IEEE SOS/SOI Tech. Conf., Stateline, Nevada, October 3–5, 1989, IEEE Catalog number 89CH2796–1(1989) 123

  18. Tong QY, Gösele U (1995) J Electrochem Soc 142:3975

    Article  CAS  Google Scholar 

  19. Yu HH, Suo Z (1998) J Mech Phys Solids 46:829

    Article  CAS  Google Scholar 

  20. Kendall K (2001) Molecular adhesion and its application: the sticky universe. Kluwer Academic /Plenum Publishers, NY, p 28

    Google Scholar 

  21. Gui C, Elwenspoek M, Tas N, Gardeniers JGE (1999) J Appl Phys 85:7448

    Article  CAS  Google Scholar 

  22. Liau ZL (1997) Phys Rev B 55:12899

    Article  CAS  Google Scholar 

  23. Lee WG, Woo SI (1997) J Mater Sci 32:815

    Article  CAS  Google Scholar 

  24. Chen KN, Fan A, Reif R (2002) J Mater Sci 37:3441

    Article  CAS  Google Scholar 

  25. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, UK

    Google Scholar 

  26. Zhang Y (2007) J Phy D Appl Phy 40:1118

    Article  CAS  Google Scholar 

  27. Pinard K, Jain SC, Willander M, Atkinson A, Maes HE, Van Overstraeten R (1998) J Appl Phys 84:2507

    Article  Google Scholar 

  28. Maszara WP, Goetz G, Caviglia A, McKitterick JB (1988) J Appl Phys 64:4943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful for the financial support of the National Natural Science Foundation of China (NSFC, Grant No. 10502050) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang.

Appendix

Appendix

In the boundary conditions as given by Eqs. 7 and 8, the fourth and eighth are equivalent to the following two:

$$\sigma _{xz}^1 (z=0)-\sigma _{xz}^2 (z=0)=0$$
$$\sigma _{xz}^1 (z=0)+\sigma _{xz}^2 (z=0)=\frac{2G_i}{\eta}[u^{1}(z=\frac{t_1 }{2})-u^{2}(z=-\frac{t_2 }{2})].$$

We arrange them in the last two rows of the following matrix form:

$$\left[{{\begin{array}{llllllll}{m_{11}}& {m_{12}}& {m_{13}}& {m_{14}}& 0& 0& 0& 0 \\ {m_{21}}& {m_{22}}& {m_{23}}& {m_{24}}& 0& 0& 0& 0 \\ {m_{31}}& {m_{32}}& {m_{33}}& {m_{34}}& 0& 0& 0& 0 \\ 0& 0& 0& 0& {m_{45}}& {m_{46}}& {m_{47}}& {m_{48}} \\ 0& 0& 0& 0& {m_{55}}& {m_{56}}& {m_{57}}& {m_{58}} \\ 0& 0& 0& 0& {m_{65}}& {m_{66}}& {m_{67}}& {m_{68}} \\ {m_{71}}& {m_{72}}& {m_{73}}& {m_{74}}& {m_{75}}& {m_{76}}& {m_{77}}& {m_{78}} \\ {m_{81}}& {m_{82}}& {m_{83}}& {m_{84}}& {m_{85}}& {m_{86}}& {m_{87}}& {m_{88}} \\ \end{array}}} \right]\left({{\begin{array}{lllllll}{a_1} \\ {a_2} \\ {a_3} \\ {a_4} \\ {a_5} \\ {a_6} \\ {a_7} \\ {a_8} \\ \end{array} }} \right)=\left( {{\begin{array}{llllll} 0 \\ 0 \\ {-\frac{H_1}{2}} \\ 0 \\ 0 \\ {\frac{H_2}{2}} \\ 0 \\ 0 \\ \end{array}}} \right)$$
(13)

With m ij s given as: \(m_{11}=-2ke^{\sqrt{2}kt_1},\) \(m_{12}=k(2\sqrt{2}-2kt_1-2\sqrt{2}\nu _1)e^{\sqrt{2}kt_1},\) \(m_{13}=-2ke^{-\sqrt{2}kt_1},\) \(m_{14}=k(-2\sqrt{2}-2kt_1+2\sqrt{2}\nu _1)e^{-\sqrt{2}kt_1}\) \(m_{21}=2\sqrt{2}ke^{\sqrt{2}kt_1},\) \(m_{22}=k(-2+4\nu _1+2\sqrt{2}kt_1)e^{\sqrt{2}kt_1},\) \(m_{23}=-2\sqrt{2}ke^{-\sqrt{2}kt_1},\) \(m_{24}=k(-2+4\nu _1-2\sqrt{2}kt_1)e^{-\sqrt{2}kt_1}\) \(m_{31}=-\sqrt{2},\) m 32 = 3−4ν1, \(m_{33}=\sqrt{2},\) m 34 = 3−4ν1 \(m_{45}=-2ke^{-\sqrt{2}kt_2},\) \(m_{46}=k(2\sqrt{2}+2kt_2-2 \sqrt{2}\nu _2)e^{-\sqrt{2}kt_2},\) \(m_{47}=-2ke^{\sqrt{2}kt_2},\) \(m_{48}=k(-2\sqrt{2}+2kt_2+2\sqrt{2}\nu _2)e^{\sqrt{2}kt_2}\) \(m_{55}=2\sqrt{2}ke^{-\sqrt{2}kt_2},\) \(m_{56}=k(-2+4\nu _2-2\sqrt{2}kt_2)e^{-\sqrt{2}kt_2},\) \(m_{57}=-2\sqrt{2}ke^{\sqrt{2}kt_2},\) \(m_{58}=k(-2+4\nu _2+2\sqrt{2}kt_2)e^{\sqrt{2}kt_2}\) \(m_{65}=-\sqrt{2},\) m 66 = 3−4ν2, \(m_{67}=\sqrt{2},\) m 68 = 3−4ν2, \(m_{71}=\sqrt{2}\frac{E_1(1+\nu _2)}{E_2 (1+\nu _1)},\) \(m_{72}=(-1+2\nu _1)\frac{E_1(1+\nu _2)}{E_2(1+\nu _1)},\) \(m_{73}=-\sqrt{2}\frac{E_1(1+\nu _2)}{E_2(1+\nu _1)},\) \(m_{74}=(-1+2\nu _1)\frac{E_1(1+\nu _2)}{E_2(1+\nu _1)},\) \(m_{75}=-\sqrt{2},\) m 76 = 1−2ν2, \(m_{77}=\sqrt{2},\) m 78 = 1−2ν2 \(m_{81}=\frac{\sqrt{2}E_1k}{1+\nu _1}-\frac{2G_i}{\eta }e^{\frac{\sqrt{2}}{2}kt_1},\) \(m_{82}=\frac{E_1k(-1+2\nu _1)}{1+\nu _1}-\frac{{G_i}kt_1}{\eta }e^{\frac{\sqrt{2}}{2}kt_1},\) \(m_{83}=\frac{-\sqrt{2}E_1{k}}{1+\nu _1 }-\frac{2G_i } {\eta }e^{\frac{-\sqrt{2}}{2}kt_1 },\) \(m_{84}=\frac{E_1k(-1+2\nu _1)}{1+\nu _1}-\frac{G_i kt_1}{\eta}e^{\frac{-\sqrt{2}}{2}kt_1},\) \(m_{85}=\frac{\sqrt{2}E_2 k}{1+\nu _2}+\frac{2G_i}{\eta}e^{\frac{-\sqrt{2}}{2}kt_2},\) \(m_{86}=\frac{{E_2}k(-1+2\nu _2)}{1+\nu _2}-\frac{G_i kt_2}{\eta}e^{\frac{-\sqrt{2}}{2}kt_2},\) \(m_{87}=\frac{-\sqrt{2}E_2 k}{1+\nu _2}+\frac{2G_i}{\eta}e^{\frac{\sqrt{2}}{2}kt_2},\) \(m_{88}=\frac{E_2 k(-1+2\nu _2)}{1+\nu _2}-\frac{G_i kt_2}{\eta}e^{\frac{\sqrt{2}}{2}kt_2}\)

The strategy of solving Eq. 13 is to express a 1, a 2, a 3 via a 4 and a 5, a 6, a 7 via a 8 first, and then substitute them into the last two equations of Eq. 13 to solve a 4 and a 8. Therefore, we have

$$a_1=\frac{\left|{{\begin{array}{lll}{V_1}& {m_{12}}& {m_{13}} \\ {V_2}& {m_{22}}& {m_{23}} \\ {V_3}& {m_{32}}& {m_{33}} \\ \end{array}}} \right|}{D}=\frac{k_1}{D}a_4-\frac{H_1}{2D}(m_{12}m_{23}-m_{13}m_{22}),$$
(14)
$$a_2=\frac{\left|{{\begin{array}{lll}{m_{11}}& {V_1}& {m_{13}} \\ {m_{21}}& {V_2}& {m_{23}} \\ {m_{31}}& {V_3}& {m_{33}} \\ \end{array}}} \right|}{D}=\frac{k_2}{D}a_4+\frac{H_1}{2D}(m_{11}m_{23}-m_{13}m_{21}),$$
(15)

and

$$a_3=\frac{\left|{{\begin{array}{lll}{m_{11}}& {m_{12}}& {V_1} \\ {m_{21}}& {m_{22}}& {V_2} \\ {m_{31}}& {m_{23}}& {V_3} \\ \end{array}}} \right|}{D}=\frac{k_3}{D}a_4+\frac{H_1}{2D}(m_{12}m_{21}-m_{11}m_{22}),$$
(16)

here D, V 1, V 2, and V 3 are defined as

$$D=\left|{{\begin{array}{lll}{m_{11}}& {m_{12}}& {m_{13}} \\ {m_{21}}& {m_{22}}& {m_{23}} \\ {m_{31}}& {m_{32}}& {m_{33}} \\ \end{array}}} \right|, V_1=-m_{14}a_4,\,V_2=-m_{24}a_4,\,V_3=-\frac{H_1}{2}-m_{34}a_4.$$

And k 1, k 2, and k 3 are k 1 = −m 14(m 22 m 33m 23 m 32) + m 24(m 12 m 33m 13 m 32)−m 34(m 12 m 23m 13 m 22), k 2 = m 14(m 21 m 33m 23 m 31)−m 24(m 11 m 33m 13 m 31) + m 34(m 11 m 23m 13 m 21), k 3 = m 14(m 22 m 31m 21 m 32)−m 24(m 12 m 31m 11 m 32) + m 34(m 12 m 21m 11 m 22).

a5, a6, and a7 are:

$$a_5=\frac{\left|{{\begin{array}{lll}{V_5}& {m_{46}}& {m_{47}} \\ {V_6}& {m_{56}}& {m_{57}} \\ {V_7}& {m_{66}}& {m_{67}} \\ \end{array}}} \right|}{J}=\frac{l_1}{J}a_8+\frac{H_2}{2J}(m_{46}m_{57}-m_{47}m_{56}),$$
(17)
$$a_6=\frac{\left|{{\begin{array}{lll}{m_{45}}& {V_5}& {m_{47}} \\ {m_{55}}& {V_6}& {m_{57}} \\ {m_{65}}& {V_7}& {m_{67}} \\ \end{array}}}\right|}{J}=\frac{l_2}{J}a_8-\frac{H_2}{2J}(m_{45}m_{57}-m_{47}m_{55}),$$
(18)

and

$$a_7=\frac{\left|{{\begin{array}{lll}{m_{45}}& {m_{46}}& {V_5} \\ {m_{55}}& {m_{56}}& {V_6} \\ {m_{65}}& {m_{66}}& {V_7} \\ \end{array}}} \right|}{J}=\frac{l_3}{J}a_8-\frac{H_2}{2J}(m_{46}m_{55}-m_{45}m_{56}),$$
(19)

with J, V5, V6 and V7 defined as

$$J=\left|{{\begin{array}{lll}{m_{45}}& {m_{46}}& {m_{47}} \\ {m_{55}}& {m_{56}}& {m_{57}} \\ {m_{65}}& {m_{66}}& {m_{67}} \\ \end{array}}} \right|,\,V_5=-m_{48}a_8,\,V_6=-m_{58}a_8,\,V_7=\frac{H_2}{2}-m_{68}a_8.$$

l1, l2, and l3 are l1 = −m48(m56m67m57m66) + m58(m46m67m47m66)−m68(m46m57m47m56), l2 = m48(m55m67m57m65)−m58(m45m67m47m65) + m68(m45m57m47m55).

And l 3 = m 48(m 56 m 65m 55 m 66)−m 58(m 46 m 65m 45 m 66) + m 68(m 46 m 55m 45 m 56).

Substitution of the expressions of a 1, a 2, a 3in Eqs. 14, 15, 16 and a 5, a 6, a 7 in Eqs.17, 18, 19 into the last two equations of Eq. 13 gives following equations of a 4 and a 8:

$$\left\{{{\begin{array}{l}{M_{11}a_4+M_{12}a_8=\frac{H_1}{2D}\alpha _1+\frac{H_2}{2J}\alpha _2} \\ {M_{21}a_4+M_{22}a_8=\frac{H_1}{2D}\gamma _1 +\frac{H_2}{2J}\gamma _2} \\ \end{array}}} \right.,$$
(20)

with M ij s defined as \(M_{11}=\frac{m_{71}k_1+m_{72}k_2+m_{73}k_3}{D}+m_{74},\,M_{12}=\frac{m_{75}l_1+m_{76}l_2+m_{77}l_3}{J}+m_{78},\) and \(M_{21}=\frac{m_{81}k_1+m_{82}k_2+m_{83}k_3}{D}+\,m_{84},\,M_{22}=\frac{m_{85}l_1+m_{86}l_2+m_{87}l_3}{J}+m_{88}.\)

And α1 and α2 are defined as

$$\alpha _1=m_{71}(m_{12}m_{23}-m_{13}m_{22})-m_{72}(m_{11}m_{23}-m_{13}m_{21})-m_{73}(m_{12}m_{21}-m_{11}m_{22})$$

and

$$\alpha _2=-m_{75}(m_{46}m_{57}-m_{47}m_{56})+m_{76}(m_{45}m_{57}-m_{47}m_{55})+m_{77}(m_{46}m_{55}-m_{45}m_{56}).$$

γ1 and γ2 are

$$\gamma _1=m_{81}(m_{12}m_{23}-m_{13}m_{22})-m_{82}(m_{11}m_{23}-m_{13}m_{21})-m_{83}(m_{12}m_{21}-m_{11}m_{22}),$$

and

$$\gamma _2=-m_{85}(m_{46}m_{57}-m_{47}m_{56})+m_{86}(m_{45}m_{57}-m_{47}m_{55})+m_{87}(m_{46}m_{55}-m_{45}m_{56}).$$

a 4 and a 8 are solved as

$$a_4=A_1 H_1+A_2 H_2, a_8=B_1 H_1+B_2 H_2,$$
(21)

with A i and B i (i = 1, 2) given as

$$A_1=\frac{\alpha _1 M_{22}-\gamma _1 M_{12}}{2D(M_{11}M_{22}-M_{12}M_{21})}, A_2=\frac{\alpha_2 M_{22}-\gamma_2 M_{12}}{2J(M_{11}M_{22}-M_{12}M_{21})}.$$

and

$$B_1=\frac{\gamma_1 M_{11}-\alpha_1 M_{21}}{2D(M_{11}M_{22}-M_{12}M_{21})},B_2=\frac{\gamma_2 M_{11}-\alpha_2 M_{21}}{2J(M_{11}M_{22}-M_{12}M_{21})}.$$

Substitute the above solution of a 8 and a 4 into Eqs. 14, 15, and 16, and 17, 18, and 19, we have

$$\begin{aligned}a_1 &=C_1 H_1+C_2 H_2,\,a_2=F_1 H_1+F_2 H_2,\,a_3 =I_1 H_1+I_2 H_2\\ a_5 &=P_1 H_1+P_2 H_2,\,a_6=Q_1 H_1+Q_2 H_2,\,a_7=R_1 H_1+R_2 H_2 , \end{aligned}$$
(22)

with

$$C_1=\frac{k_1}{D}A_1-\frac{m_{12}m_{23}-m_{13}m_{22}}{2D},\,C_2 =\frac{k_1}{D}A_2,\,F_1=\frac{k_2}{D}A_1+\frac{m_{11}m_{23}-m_{13}m_{21}}{2D},\,F_2=\frac{k_2 }{D}A_2,$$
$$I_1=\frac{k_3}{D}A_1+\frac{m_{12}m_{21}-m_{11}m_{22}}{2D},I_2 =\frac{k_3 }{D}A_2,P_1=\frac{l_1}{J}B_1,P_2=\frac{l_1}{J}B_2+\frac{m_{46}m_{57}-m_{47}m_{56}}{2J},$$

and

$$Q_1=\frac{l_2}{J}B_1,Q_2=\frac{l_2}{J}B_2-\frac{m_{45}m_{57}-m_{47}m_{55}}{2J},R_1=\frac{l_3}{J}B_1,R_2=\frac{l_3}{J}B_2-\frac{m_{46}m_{55} -m_{45}m_{56}}{2J}$$

Equations 9 and 10 result in the following two equations:

$$\left\{{{\begin{array}{l} {H_1+H_2=2H} \\ {H_1+rH_2=0} \\ \end{array}}}\right..$$
(23)

Here r is defined as

$$r=\frac{-\beta C_2+\sqrt{2}\beta (1-\nu _1)F_2-\beta I_2-\sqrt{2}(1-\nu _1)A_2+P_2-\sqrt{2}(1-\nu _2)Q_2+R_2+\sqrt{2}(1-\nu _2)B_2}{-\beta C_1+\sqrt{2}\beta (1-\nu _1)F_1-\beta I_1-\sqrt{2}(1-\nu _1)A_1 +P_1-\sqrt{2}(1-\nu _2)Q_1+R_1+\sqrt{2}(1-\nu _2)B_1},$$

with

$$\beta=\frac{E_1(1+\nu _2)}{E_2(1+\nu _1)}$$

Therefore, H 1 and H 2 are solved as follows

$$H_1=\frac{-2rH}{1-r},H_2=\frac{2H}{1-r}.$$
(24)

Substitution of the above solution of H 1 and H 2 into Eqs. 21 and 22 gives the solutions of all a i s.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. Interface layer effect on the stress distribution of a wafer-bonded bilayer structure. J Mater Sci 43, 88–97 (2008). https://doi.org/10.1007/s10853-007-2136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2136-2

Keywords

Navigation