Skip to main content
Log in

Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline nanofibers were synthesized by interfacial polymerization in the presence of hydrochloric acid (HClO4). The effects of the molar ratio of ammonium persulfate (APS) to aniline (ANI) (represented by [APS]/[ANI] ratio) and HClO4 concentration on the morphology, chain structures, and electrical properties of the polyaniline (PANI) were investigated to understand the formation of nanofibers. The structure and properties of the resulted PANI were characterized with FTIR, UV–Vis, TEM, XRD, and conductivity in detail. The results showed that low [APS]/[ANI] ratio (≤1/4) and high HClO4 concentration (≥1000 mol/m3) were benefit to the preparation of uniform PANI nanofibers with low content of phenazine-like units and ANI oligomers, and high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang JX, Kaner RB (2006) Chem Commun (6):367

    Article  Google Scholar 

  2. Martin CR, Van Dyke LS, Cai Z, Liang W (1990) J Am Chem Soc 112:8976

    Article  CAS  Google Scholar 

  3. Martin CR (1994) Science 266:1961

    Article  CAS  Google Scholar 

  4. Qiu HJ, Wan MX, Matthews B, Dai LM (2001) Macromolecules 34:675

    Article  CAS  Google Scholar 

  5. Liu J, Wan MX (2001) J Mater Chem 11:404

    Article  CAS  Google Scholar 

  6. Zhang XY, Goux WJ, Manohar SK (2004) J Am Chem Soc 126:4502

    Article  CAS  Google Scholar 

  7. MacDiarmid AG, Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Synth Met 119:27

    Article  CAS  Google Scholar 

  8. Pinto NJ, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Appl Phys Lett 83:4244

    Article  CAS  Google Scholar 

  9. Choi SJ, Park SM (2002) J Electrochem Soc 149:26

    Article  Google Scholar 

  10. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin YH (2002) Angew Chem Int Ed 41:3665

    Article  CAS  Google Scholar 

  11. Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314

    Article  CAS  Google Scholar 

  12. Huang JX, Virji S, Weiller BH, Kaner RB (2004) Chem Eur J 10:1314

    Article  CAS  Google Scholar 

  13. Hopkins AR, Sawall DD, Viaalhermosa RM, Lipeles RA (2004) Thin Solid Films 469–470:304

    Article  Google Scholar 

  14. Zhang XY, Chan-Yu-King R, Jose A, Manohar SK (2004) Synth Met 145:23

    Article  CAS  Google Scholar 

  15. Huang JX, Kaner RB (2004) Angew Chem Int Ed 116:5941

    Article  Google Scholar 

  16. Huang JX, Kaner RB (2004) Angew Chem Int Ed 43:5817

    Article  CAS  Google Scholar 

  17. Chiou NR, Epstein AJ (2005) Adv Mater 17:1679

    Article  CAS  Google Scholar 

  18. Furukawa Y, Ueda F, Hyodo Y, Harada I, Nakajima T, Kawagoe T (1988) Macromolecules 21:1297

    Article  CAS  Google Scholar 

  19. Kaplan S, Conwell EM, Richter AF, MacDiamid AG (1985) J Am Chem Soc 161:419

    Google Scholar 

  20. Miroslava T, Ivana S, Elena NK, Jaroslav S, Petr H, Gordana CM (2006) J Phys Chem B 110:9461

    Article  Google Scholar 

  21. Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP, Monkman A, Lefrant S (1998) J Phys Chem B 102:7382

    Article  CAS  Google Scholar 

  22. Quillard S, Boyer MI, Cochet M, Buisson JP, Lefrant S (1999) Synth Met 101:768

    Article  CAS  Google Scholar 

  23. Konyushenko EN, Stejskal J, Šeděnková I, Trchová M, Sapurina I, Cieslar M, Prokěs J (2006) Polym Int 55:31

    Article  CAS  Google Scholar 

  24. Phillips SD, Yu G, Heeger AJ (1989) J Phys Rev B 39:10702

    Article  CAS  Google Scholar 

  25. Salma B, Rudolf H (2007) Electrochimica Acta 52:5346

    Article  Google Scholar 

  26. Laska J, Widlarz J (2005) Polymer 46:1485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial supports of the National Natural Science Foundation of China (no: 20236020), and the Key Programs of Ministry of Education of China (no: 106074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengchao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, C., Wang, G., Huang, F. et al. Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers. J Mater Sci 43, 197–202 (2008). https://doi.org/10.1007/s10853-007-2133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2133-5

Keywords

Navigation