Skip to main content
Log in

Grain boundary reorientation in copper

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present route to grain boundary engineering (GBE) is usually based on multiple annealing twinning which can only be applied to a certain subset of materials, namely those that twin prolifically. A more general approach has been highlighted recently, following experimental evidence that certain boundary planes in iron bicrystals are ‘special’, and that this classification is not based on misorientation. It was suggested that, under suitable conditions, individual interfaces could reorient the most energetically advantageous orientations. This approach concurs with a similar concept of ‘grain boundary plane engineering’, proposed previously. In the present article we explore this concept and report the effect of long duration, low temperature annealing on the distribution of boundary misorientation and planes in copper. The new findings give support to the possibility of grain boundary structure optimisation via controlled annealing. To have established that grain boundary plane reorientation is feasible opens up new avenues and challenges in the field of grain boundary research. This could have significant impact both scientifically in terms of understanding grain boundary structure and technologically in the field of GBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Randle V (2004) Acta Mater 52:4067

    Article  CAS  Google Scholar 

  2. Kumar M, Schuh CA (eds) (2006) Viewpoint set no. 40, Scripta Mater. Grain boundary engineering, vol 54, p 961

  3. Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Met Mater 33:1387

    Article  CAS  Google Scholar 

  4. Janssens KGF, Olmsted D, Holm EA, Foiles SM, Plimpton SJ, Derlet PM (2006) Nat Mater 5:124

    Article  CAS  Google Scholar 

  5. Wolf D (1990) Acta Metall Mater 38:791

    Article  CAS  Google Scholar 

  6. Merkle KL, Wolf D (1992) Philos Mag 65A:513

    Article  Google Scholar 

  7. Randle V, Davies P, Hulm B (1999) Philos Mag 79A:305

    Article  Google Scholar 

  8. Lejcek P, Hofmann S, Paidar V (2003) Acta Mater 51:3951

    Article  CAS  Google Scholar 

  9. Saylor DM, Adams BL, El-Dasher BS, Rohrer GS (2003) Metall Mater Trans 34A:1

    Google Scholar 

  10. Saylor DM, Morawiec A, Rohrer GS (2003) Acta Mater 51:3663

    Article  CAS  Google Scholar 

  11. Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS (2004) Acta Mater 52:3649

    Article  CAS  Google Scholar 

  12. Randle V, Rohrer GS, Kim C, Hu Y (2006) Acta Mater 54:4480

    Article  Google Scholar 

  13. Brandon DG (1966) Acta Metall 14:1479

    Article  CAS  Google Scholar 

  14. Fullman RL (1951) J Appl Phys 22:456

    Article  CAS  Google Scholar 

  15. Sargent CM (1968) Trans Metall Soc AIME 242

  16. Randle V, Davies H (2002) Ultramicroscopy 90:153

    Article  CAS  Google Scholar 

  17. Wolf U, Ernst F, Muschik T, Finnis MW, Fischmeister HF (1992) Philos Mag A 66:991

    Article  CAS  Google Scholar 

  18. Gindraux G, Form W (1973) J Inst Metal 101:85

    CAS  Google Scholar 

  19. Reed BW, Kumar M (2006) Scripta Mater 54:1029

    Article  CAS  Google Scholar 

  20. Garg A, Clark WAT, Hirth JP (1989) Philos Mag 59:479

    Article  CAS  Google Scholar 

  21. Randle V (1999) Acta Mater 47:4187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions and assistance with the five-parameter software from Professor G. Rohrer and Mr. H. Miller from Carnegie Mellon University, Pittsburgh, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Randle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randle, V., Hu, Y. & Coleman, M. Grain boundary reorientation in copper. J Mater Sci 43, 3782–3791 (2008). https://doi.org/10.1007/s10853-007-2128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2128-2

Keywords

Navigation