Skip to main content
Log in

Orientation relations between carbon nanotubes grown by chemical vapour deposition and residual iron-containing catalysts

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Orientation relationships between the growth direction of carbon nanotubes and encapsulated residual iron-containing particles have been determined using transmission electron microscopy. The nanotubes that are prepared by Fe-catalysed chemical vapour deposition on sol–gel Fe(NO3)3-tetraethyl orthosilicate substrates are the helical multiwall type. Nanoscale particles of both the low-temperature α-Fe (ferrite) and high-temperature γ-Fe (austenite) were found in the cavity of the carbon nanotubes with \( {\left\langle {001} \right\rangle }_{\alpha } \), \( {\left\langle {011} \right\rangle }_{\alpha } \) and \( {\left\langle {110} \right\rangle }_{\gamma } \) parallel to the tube growth direction, respectively. Cementite Fe3C, the most abundant Fe-containing phase in present samples was also found to be entrapped in nanotubes with \( {\text{[100]}}_{{{\text{Fe}}_{{\text{3}}} {\text{C}}}} \) or \( {\text{[101]}}_{{{\text{Fe}}_{{\text{3}}} {\text{C}}}} \) parallel to the tube axis. The metastable retention of γ-Fe particles at room temperature is ascribed to the strain energy induced at the particle-nanotube interface due to volume expansion upon the γ- → α-Fe phase transformation. The decomposition of initially high aspect-ratio, rod-shape particles into a string of ovulation, while encapsulated in carbon nanotubes is accounted for by the Rayleigh instability. Ovulation leading to reduced particle size has also contributed to increase the surface energy term that counterbalances the total free energy change of phase transformation from γ- to α-Fe and further aids to the metastable retention of γ-Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ren ZF, Huang ZP, Provencio PN (1998) Science 282:1105

    Article  CAS  Google Scholar 

  2. Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Lee YH, Choi WB, Lee NS, Park GS, Kim JM (1997) Chem Phys Lett 312:461

    Article  Google Scholar 

  3. Pan ZW, Xie SS, Zhou WY, Wang G (1999) Chem Phys Lett 299:97

    Article  CAS  Google Scholar 

  4. Kim H, Sigmund W (2000) Carbon 43:1743

    Article  Google Scholar 

  5. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  6. Ebbesen TW, Ajayan PM (2000) Nature 358:220

    Article  Google Scholar 

  7. Qin LC, Iijima S (1997) Chem Phys Lett 269:65–71

    Article  CAS  Google Scholar 

  8. AuBuchon JF, Daraio C, Chen LH, Gapin AI, Jin S (2005) J Phys Chem B Lett 109:24215

    Article  CAS  Google Scholar 

  9. Strong KL, Anderson DP, Lafdi K, Kuhn JN (2003) Carbon 41:1477

    Article  CAS  Google Scholar 

  10. Kim H, Sigmund W (2005) J Cryst Growth 276:594

    Article  CAS  Google Scholar 

  11. Mühl T, Elefant D, Graff A, Kozhuhaova R, Leonhardt A, Mönch I, Ritschel M, Simon P, Groudeva-Zotova S, Schnider CM (2003) J Appl Phys 93:7894

    Article  Google Scholar 

  12. Qiu J, Li Q, Wang Z, Sun Y, Zhang H (2006) Carbon 44:2565

    Article  CAS  Google Scholar 

  13. Klein C, Hurlbut CS Jr (1993) Manual of Mineralogy, 21st edn. J. Wiley, New York, p 449

    Google Scholar 

  14. Zhou D, Fleming RM, Murphy DW, Chen CH, Haddon RC, Ramirez AP, Glarum SH (1994) Science 263:1744

    Article  CAS  Google Scholar 

  15. Zhang XB, Zhang XF, Amelinckx S, van Tendeloo G, van Landuyt J (1994) Ultramicroscopy 54:237

    Article  CAS  Google Scholar 

  16. Zhang XF, Zhang XB, van Tendeloo G, Amelinckx S, Op de Beeck M, van Landuyt J (1993) J Cryst Growth 130:368

    Article  CAS  Google Scholar 

  17. Qin LC, Iijima S, Kataura H, Maniwa Y, Suzuki S, Achiba Y (1997) Chem Phys Lett 268:101

    Article  CAS  Google Scholar 

  18. Bernaerts D, Zettl A, Chopra NG, Thess A, Smalley RE (1998) Solid Stat Comm 105:145

    Article  CAS  Google Scholar 

  19. Liu M, Cowley JM (1994) Ultramicroscopy 53:333

    Article  CAS  Google Scholar 

  20. Prados C, Crespo P, Gonzalez JM, Hernando A, Marco JF, Gancedo R, Grobert N, Terrones M, Walton RM, Kroto HW (2002) Phys Rev B 65:113405

    Article  Google Scholar 

  21. Chipman J (1972) Metall Trans 3:55

    Article  CAS  Google Scholar 

  22. Kim H, Kaufman MJ, Sigmund WM, Jacques D, Andrews R (2003) J Mater Res 18:1104

    CAS  Google Scholar 

  23. Heuer AH (1987) J Am Ceram Soc 70:689

    Article  CAS  Google Scholar 

  24. Green DJ, Hannink RHJ, Swain MV (1989) Transformation toughening of ceramics. CRC Press, Boca Ranton, FL, p 17

    Google Scholar 

  25. Garive RC (1965) J Chem Phys 69:1238

    Article  Google Scholar 

  26. Hsiang HI, Yen FS (1996) J Am Ceram Soc 79:1053

    Article  CAS  Google Scholar 

  27. Lord Rayleigh (1878) Proc London Math Soc 4:4

    Article  Google Scholar 

  28. Nichols FA (1976) J Mater Sci 11:1077

    Article  Google Scholar 

  29. Cahn JW (1979) Script Metall 13:1069

    Article  Google Scholar 

  30. Gupta TK (1978) J Am Ceram Soc 61:191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Council of Taiwan for funding through contracts NSC 93-2216-E-110-015, 94-2216-E-110-004 and 95-2221-E-110-033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, CY., Huang, CC., Cheng, HZ. et al. Orientation relations between carbon nanotubes grown by chemical vapour deposition and residual iron-containing catalysts. J Mater Sci 43, 123–131 (2008). https://doi.org/10.1007/s10853-007-2122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2122-8

Keywords

Navigation