Skip to main content
Log in

Microstructure evolution in deformed copper

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of strain and temperature on the microstructure and the detailed structure of dislocation walls in compressed pure polycrystalline copper were systematically studied. The microstructure observed consisted of dislocation cells and second generation microbands (MB2) and is presented in a microtructural map. The detailed structure of the cell’s boundaries evolves with increasing strain and/or temperature from tangled dislocations into arrays of parallel dislocations. Interplay between strain and temperature controls the microstructure and the detailed structure of the dislocation boundaries. Above 0.5 Tm only MB2 are observed; a different type of MB2 is also observed, one order of magnitude wider than the one observed at the lower temperature. With increasing strain and temperature the MB2 density increases. It seems that dislocation cells and MB2 are competitive dislocation patterns and at elevated temperatures the MB2 is the preferred dislocation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hansen N, Jensen DJ (1999) Phil Trans R Soc Lond A357:1447

    Article  Google Scholar 

  2. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Acta Metall Mater 40:205

    Article  CAS  Google Scholar 

  3. Hansen N, Hughes DA (1995) Phys Stat Sol (b) 149:155

    Article  CAS  Google Scholar 

  4. Hughes DA (2002) Script Mater 47:697

    Article  CAS  Google Scholar 

  5. Hughes DA, Hansen N (1997) Acta Mater 45:3871

    Article  CAS  Google Scholar 

  6. Swann PR (1963) In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. Interscience, NY p 131

  7. Hansen N (1992) Scri Metall Mater 27:1447

    Article  CAS  Google Scholar 

  8. Landau P, Shneck RZ, Makov G, Venkert A (2007) In: Balk TJ, Minor A, Porter A, Plitzko J (eds) Electron microscopy across hard and soft materials, Mat. Res. Soc. Symp. Proc. 982E. Warrendale, PA, 0982-KK07-04

  9. Kuhlmann-Wilsdorf D (1989) Mat Sci Eng A131:1

    Google Scholar 

  10. Godfrey A, Jensen DJ, Hansen N (1998) Acta Mater 46:835

    Article  Google Scholar 

  11. Caballero V, Varma SK (1999) J Mat Sci 34:461

    Article  CAS  Google Scholar 

  12. Wagner P, Engler O, Lucke K (1995) Acta Metall Mater 43:3799

    Article  CAS  Google Scholar 

  13. Hansen N (1990) Mat Sci Tech 6:1039

    CAS  Google Scholar 

  14. Huang X (1998) Scrip Mater 38:1697

    Article  CAS  Google Scholar 

  15. Huang X, Borrego A, Pantleon W (2001) Mat Sci Eng A 319–321:237

    Article  Google Scholar 

  16. Ananthan VS, Leffers T, Hansen N (1991) Mat Sci Tech 7:1069

    CAS  Google Scholar 

  17. Leffers T, Anathan VS, Christofferson H (2001) Mat Sci Eng A 319:148

    Article  Google Scholar 

  18. Anathan VS, Leffers T, Hansen N (1991) Scrip Metall Mater 25:137

    Article  Google Scholar 

  19. Gonzalea B, Murr LE, Valerio OL, Esquivel EV, Lopez H (2003) Mat Char 49:359

    Article  CAS  Google Scholar 

  20. Malin AS, Hatherly M (1979) Met Sci 13:463

    Article  CAS  Google Scholar 

  21. Huang JC, Gray III GT (1989) Acta Metall 37:3335

    Article  CAS  Google Scholar 

  22. Hatherly M (1992) Scrip Metall Mater 27:1453

    Article  CAS  Google Scholar 

  23. Korbel A, Martin P (1986) Acta metal 34:1905

    Article  CAS  Google Scholar 

  24. Kim YW, Bourell DL (1988) Metall Trans A 19:2041

    Article  Google Scholar 

  25. Kohlhoff GD, Malin AS, Lucke K, Hatherly M (1988) Acta Metall 36:2841

    Article  Google Scholar 

  26. Malin AS, Huber J, Hatherly M (1981) Z Metallk 72:310

    CAS  Google Scholar 

  27. Bassim MN, Liu CD (1993) Mat Sci Eng A 164:170

    Article  Google Scholar 

  28. Jackson PJ (1983) Scrip Metall 17:199

    Article  CAS  Google Scholar 

  29. Park NK, Parker BA (1989) Mat Sci Eng A 113:431

    Article  Google Scholar 

  30. Gan J, Vetrano JS, Khaleel MA (2002) J Eng Mat Tech 124:297

    Article  CAS  Google Scholar 

  31. Landau P (2005) Microstructure evolution of deformed fcc metals. M.Sc thesis, Ben-Gurion University, Israel

  32. Caillard D, Martin JL (1982) Acta Metall 30:437

    Article  CAS  Google Scholar 

  33. Anongba PNB, Bonneville J, Martin JL (1993) Acta Metall Mater 41:2897

    Article  CAS  Google Scholar 

  34. Anongba PNB, Bonneville J, Martin JL (1993) Acta Metall Mater 41:2907

    Article  CAS  Google Scholar 

  35. Straub S, Blum W, Maier HJ, Unger T, Borbely A, Renner H (1996) Acta Mater 44:4337

    Article  CAS  Google Scholar 

  36. Belyakov A, Sakai T, Miura H, Tsuzaki K (2001) Phil Mag A 81:2629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Landau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landau, P., Shneck, R.Z., Makov, G. et al. Microstructure evolution in deformed copper. J Mater Sci 42, 9775–9782 (2007). https://doi.org/10.1007/s10853-007-1999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1999-6

Keywords

Navigation