Skip to main content
Log in

Structural and dielectric properties of Bi doped Ba0.6Sr0.4TiO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric properties of 0.1–15% mol bismuth doped Ba0.6Sr0.4TiO3 (BST) ceramics have been investigated systematically. The solubility limit of bismuth is determined as about 10 mol% by means of both X-ray diffraction and scanning electron microscopy, which is further verified by the fact that the lattice constant of the samples above 10 mol% is almost invariable. The temperature dependence of the dielectric permittivity suggest that the ferroelectric behavior transit to relaxor ferroelectric type when impurity concentration reaches 5 mol%, and further to relaxor behavior for samples above 10 mol% Bi content, which is verified by the absence of a hysteresis loop. Thermal expansion results show differences between 5 and 10 mol% doped samples. Dielectric tunability at room temperature decreases with bismuth content increasing. The variation of properties was attributed to the impurity induced polar regions and former long-order structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sengupta LC, Sengupta S (1997) IEEE Trans Ultrason Ferrolectr Freq Control 44:792

    Article  Google Scholar 

  2. Gevorgian SS, Kollgerg EL (2001) IEEE Trans Microwave Theory Technol 49:2117

    Article  CAS  Google Scholar 

  3. Hwang CS, Park SO, Cho HJ, Kang CS, Kang HK, Lee SI, Lee MY (1995) Appl Phys Lett 67:2819

    Article  CAS  Google Scholar 

  4. Liu S, Liu M, Zeng Y, Li C, Chen S, Huang Y, Xia D (2002) Mater Sci Eng C 22:73

    Article  Google Scholar 

  5. Tanaka A (1996) IEEE Trans Electron Devices 43:1844

    Article  CAS  Google Scholar 

  6. Cole MW, Hbbard C, Ngo E, Ervin M, Wood M, Geyer RG, (2002) J Appl Phys 92:475

    Article  CAS  Google Scholar 

  7. Kang KT, Lim MH, Kim HG, Choi YW, Tuller HL, Kim D, Hong JM (2005) Appl Phys Lett 87:242908

    Article  Google Scholar 

  8. Saha S, Krupanidhi SB (2001) J Appl Phys 90:1250

    Article  CAS  Google Scholar 

  9. Wang SY, Cheng BL, Wang C, Dai SY, Lu HB, Zhou YL, Chen ZH, Yang GZ (2004) Appl Phys Lett 84:4116

    Article  CAS  Google Scholar 

  10. Jeon YA, Seo TS, Yoon SG (2001) Jpn J Appl Phys Part 1 40:6496

    Article  CAS  Google Scholar 

  11. Radhapiyari L, James AR, Thakur OP, Prakash C (2005) Mater Sci Eng B 117:5

    Article  Google Scholar 

  12. Sun X, Zhu B, Liu T, Li M, Zhao X, Wang D, Sun C, Chan HLW (2006) J Appl Phys 99:084103

    Article  Google Scholar 

  13. Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89:6336

    Article  CAS  Google Scholar 

  14. Kim KT, Kim CI (2003) Microelectron Eng 66:835

    Article  CAS  Google Scholar 

  15. Zhou L, Vilarinho PM, Baptista JL (2001) J Eur Ceram Soc 21:531

    Article  CAS  Google Scholar 

  16. Chen W, Yao X, Wei X (2007) Solid State Commun 141:84

    Article  CAS  Google Scholar 

  17. Yun S, Wang X (2006) Mater Lett 60:2211

    Article  CAS  Google Scholar 

  18. Samara GA (2003) J Phys Condens Matter 15:367

    Article  Google Scholar 

  19. Burns G, Dacol FH (1983) Phys Rev B 28:2527

    Article  CAS  Google Scholar 

  20. Burns G, Dacol FH (1983) Solid State Commun 48:853

    Article  CAS  Google Scholar 

  21. Burns G, Dacol FH (1984) Phys Rev B 30:4012

    Article  CAS  Google Scholar 

  22. Chong KB, Kong LB, Chen L (2004) J Appl Phys 95:1416

    Article  CAS  Google Scholar 

  23. Laguta VV, Glinchuk MD, Bykovi P, Rosa U, Jsastrabik L, Savinov M, Trybula Z (2000) Phys Rev B 61:3897

    Article  CAS  Google Scholar 

  24. Nowick AS, Fu SQ, Lee WK, Lin BS, Scherban T (1994) Mater Sci Eng B 23:19

    Article  Google Scholar 

  25. Kleemann W, Albertini A, Kuss M, Lindner R (1997) Ferroelectrics 203:57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China through the 973 project under Grant No. 2002CB613304 and NSFC under Grant No. 50402015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Yao, X. & Wei, X. Structural and dielectric properties of Bi doped Ba0.6Sr0.4TiO3 ceramics. J Mater Sci 43, 1144–1150 (2008). https://doi.org/10.1007/s10853-007-1965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1965-3

Keywords

Navigation