Skip to main content
Log in

Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The polysaccharide κ-carrageenan was used in the production of macroporous composites containing nanosized hydroxyapatite, with potential application in bone tissue engineering. Biodegradable composite scaffolds were prepared combining in situ co-precipitation of calcium phosphates with a freeze-drying technique. The effect of the Ca/P molar ratio and total ceramic content on the chemical composition, microstructure and mechanical performance of the scaffolds were investigated by thermal analysis, X-ray diffraction, FTIR, transmission electron microscopy, scanning electron microscopy, He porosimetry and compressive tests. A mixture of amorphous calcium phosphates and/or nanosized calcium-deficient hydroxyapatite was obtained in most of the composites. The formation of hydroxyapatite was induced by higher Ca/P ratios, probably due to competing reticulation of the biopolymer with calcium cations. The composite scaffolds presented interconnected pores (50–400 μm) and porosity around 97% and calcium phosphates were uniformly dispersed in the κ-carrageenan matrix. Both microstructure and compressive mechanical properties of the scaffolds were affected by the ceramic content and, for a Ca/P molar ratio of 1.67, maximum compressive strength was achieved for a ceramic content of ca. 25 wt%. Above this value the structural integrity of the composite was damaged and a dramatic decrease in mechanical strength was verified. Compressive mechanical properties of the composites were improved by increasing Ca/P atom ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413

    Article  CAS  Google Scholar 

  2. Knowles JC (2003) J Mater Chem 13:2395

    Article  CAS  Google Scholar 

  3. Legeros RC (1991) In: Calcium phosphate in oral biology and medicine, vol 15. Karger, New York

  4. Ogiso M (1998) J Biomed Mater Res B 43:318

    Article  CAS  Google Scholar 

  5. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  6. Habal MB (1991) J Craniofac Surg 2:27

    CAS  Google Scholar 

  7. Klein CPAT, de Blieck-Hogerworst JMA, Wolke JGC, de Groot K (1990) Biomaterials 11:509

    Article  CAS  Google Scholar 

  8. Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K (2003) J Biomed Mater Res A 67:844

    Article  CAS  Google Scholar 

  9. Zhao L, Chang J (2004) J Mater Sci-Mater M 15:625

    Article  CAS  Google Scholar 

  10. Araújo JV, Lopes-da-Silva JA, Almeida MM, Costa MEV (2006) Mater Sci Forum 514–516:1005

    Article  Google Scholar 

  11. Li Z, Yubao L, Aiping Y, Xuelin P, Xuejiang W, Xiang Z (2005) J Mater Sci-Mater M 16:213

    Article  CAS  Google Scholar 

  12. Tormala P, Vainiopa S, Kilpikari J, Rokkanen P (1987) Biomaterials 8:42

    Article  CAS  Google Scholar 

  13. Murphy WL, Kohn DH, Mooney DJ (2000) J Biomed Mater Res A 50:50

    Article  CAS  Google Scholar 

  14. Du C, Cui FZ, Zhu XD, de Groot K (1999) J Biomed Mater Res A 44:407

    Article  CAS  Google Scholar 

  15. Yaylaoglu MB, Korkusuz P, Ors U, Korkusuz F, Hasirci V (1999) Biomaterials 20:711

    Article  CAS  Google Scholar 

  16. Lin H-R, Yeh YJ (2004) J Biomed Mater Res B 71B:52

    Article  CAS  Google Scholar 

  17. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) J Biomed Mater Res A 75:275

    Google Scholar 

  18. Lai VMF, Wong PA-L, Lii C-Y (2000) J Food Sci 65:1332

    Article  CAS  Google Scholar 

  19. Michel A-S, Mestdagh MM, Axelos MAV (1997) Int J Biol Macromol 21:195

    Article  CAS  Google Scholar 

  20. Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio PL (2005) Biophys Chem 113:129

    Article  CAS  Google Scholar 

  21. Piculell L (1995) In: Food polysaccharides and their applications. Marcel Dekker Incorporation, New York, pp 205–217

  22. Garcia AM, Ghaly ES (1996) J Control Release 40:179

    Article  CAS  Google Scholar 

  23. Bornhöft M, Thommes M, Kleinebudde P (2005) Eur J Pharm Biopharm 59:127

    Article  CAS  Google Scholar 

  24. Naim S, Samuel B, Chauhan B, Paradkar A (2004) AAPS Pharm Sci Tech 5(2):article 25

  25. Sen M, Avci EN (2005) J Biomed Mater Res A 74:187

    Google Scholar 

  26. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Biomaterials 21:1803

    Article  CAS  Google Scholar 

  27. Balasundaram G, Sato M, Webster TJ (2006) Biomaterials 27:2798

    Article  CAS  Google Scholar 

  28. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Biomaterials 26:5414

    Article  CAS  Google Scholar 

  29. Rochas C, Rinaudo M, Landry S (1990) Carbohyd Polym 12:255

    Article  CAS  Google Scholar 

  30. Macartain P, Jacquier JC, Dawson KA (2003) Carbohyd Polym 53:395

    Article  CAS  Google Scholar 

  31. Sachlos E, Czernuszka JT (2003) Eur Cell Mater 5:29

    CAS  Google Scholar 

  32. Chen G, Ushida T, Tateishi T (2002) Macromol Biosci 2:67

    Article  CAS  Google Scholar 

  33. Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B (2002) Cryst Res Technol 37:1234

    Article  CAS  Google Scholar 

  34. Landi E, Tampieri A, Celotti G, Sprio S (2000) J Eur Ceram Soc 20:2377

    Article  CAS  Google Scholar 

  35. Gibson LJ, Ashby MF (1997) In: Cellular solids: structure and properties. Cambridge University Press, Cambridge

  36. Verheyen CCPM, de Wijn JR, van Blitterswijk CA, de Groot K (1992) J Biomed Mater Res 26:1277

    Article  CAS  Google Scholar 

  37. Elliot JC (1994) In: Structure and chemistry of the apatites and other calcium orthophosphates: studies in inorganic chemistry, vol 18. Elsevier, Amsterdam, pp 43–44

  38. Rey C, Frèche M, Heughebaert M, Heughebaert JC, Lacout JL, Lebugle A, Szilagyi J, Vignoles M (1991) Bioceramics 4:57

    Google Scholar 

  39. Zhang X, Li Y, Lv G, Zuo Y, Mu Y (2006) Polym Degrad Stabil 91:1202

    Article  CAS  Google Scholar 

  40. Liao C-J, Lin F-H, Chen K-S, Sun J-S (1999) Biomaterials 20:1807

    Article  CAS  Google Scholar 

  41. Prado-Fernandez J, Rodriguez-Vazquez JA, Tojo E, Andrade JM (2003) Anal Chim Acta 480:23

    Article  CAS  Google Scholar 

  42. Andersson J, Areva S, Spliethoff B, Lindén M (2005) Biomaterials 26:6827

    Article  CAS  Google Scholar 

  43. Krylova E, Ivanov A, Orlovski V, El-Registan G, Barinov SJ (2002) Mater Sci-Mater M 13:87

    Article  CAS  Google Scholar 

  44. Perrin FX, Nguyen V, Vernet JL (2003) J Sol-Gel Sci Techn 28:205

    Article  CAS  Google Scholar 

  45. Dorozhkin SV, Epple M (2002) Angew Chem Int Ed 41:3130

    Article  CAS  Google Scholar 

  46. Gutowska A, Jeong B, Jasionowski M (2001) Anat Rec Part A 263:342

    Article  CAS  Google Scholar 

  47. Zhang W, Piculell L, Nilsson S, Knutsen SH (1994) Carbohyd Polym 23:105

    Article  CAS  Google Scholar 

  48. Hikichi K (1993) Polym Gels Networks 1:19

    Article  CAS  Google Scholar 

  49. Hammond C (2001) In: The basis of crystallography and diffraction, 2nd edn. Oxford University Press, Oxford

  50. Zhang R, Ma PX (1999) J Biomed Mater Res A 44:446

    Article  CAS  Google Scholar 

  51. Tampieri A, Celotti G, Landi E (2005) Anal Bioanal Chem 381:568

    Article  CAS  Google Scholar 

  52. Klein CPAT, Driessen AA, de Groot K, van den Hoof A (1983) J Biomed Mater Res 17:769

    Article  CAS  Google Scholar 

  53. Knoack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) J Biomed Mater Res B 43:399

    Article  Google Scholar 

  54. Athanasiou KA, Zhu C-F, Lanctot DR, Agrawal CM, Wang X (2000) Tissue Eng 6:361

    Article  CAS  Google Scholar 

  55. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Biomaterials 17:175

    Article  CAS  Google Scholar 

  56. Jing R, Hongfei H (2001) Eur Polym J 37:2413

    Article  Google Scholar 

Download references

Acknowledgements

The help of Dr. J. A. T. Lopes da Silva in the execution of the compressive mechanical tests and of Dr. D. Evtyugin in the determination of molecular weight of κ-carrageenan are gratefully acknowledged. A. L. Daniel da Silva thanks CICECO-Centro de Investigação em Materiais Cerâmicos e Compósitos, University of Aveiro, Portugal, for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luísa Daniel-da-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel-da-Silva, A.L., Lopes, A.B., Gil, A.M. et al. Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds. J Mater Sci 42, 8581–8591 (2007). https://doi.org/10.1007/s10853-007-1851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1851-z

Keywords

Navigation