Skip to main content
Log in

Synthesis and characterization of carbon nanotubes grown on montmorillonite clay catalysts

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes have been grown on montmorillonite clay catalysts through anchoring on FeCo nanoparticles. The starting clay is a commercial sodium-rich montmorillonite in which the intercalated sodium ion was exchanged for cobalt(II) and iron(III) ions via mechanical agitation or sonication, both with and without subsequent centrifugation. The cobalt-iron intercalate clay was used as a catalyst for the synthesis of carbon nanotubes via decomposition of ethylene at 700 °C. The largest carbon deposit was obtained for catalysts prepared with 3 or 4 cation exchange equivalents. X-ray diffraction indicates both that the basal spacing of the clay increases from 12.43 Å to 16.4 Å upon intercalation of cobalt and iron. Atomic absorption analysis of the catalysts indicates that virtually all of the sodium ions originally present in the clay have been replaced by iron(III) and cobalt(II). Transmission electron micrographs show the presence of multiwall carbon nanotubes with inner and outer diameters of ca. 10 nm and 20 nm grown on metal particles present on the plates of catalysts. The iron-57 Mössbauer spectra indicate that the intercalated clay contains iron(III) in octahedral and tetrahedral sites and iron(II) in octahedral sites, the catalysts contain an extensive amount of small superparamagnetic particles of α-Fe2O3 and that the carbon-nanotube catalyst composites show the presence of iron(II) and iron(III) paramagnetic doublets, characteristic of a reduced montmorillonite, and of sextets that are characteristic of an FeCo alloy and of Fe3C cementite. The Mössbauer spectra indicate that the carbon nanotubes grow on FeCo metallic nanoparticles and bond to these particles through the formation of cementite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucas AA (1996) Carbon 34:1249

    Article  CAS  Google Scholar 

  2. Hernadi K, Kónya Z, Siska A, Kiss J, Oszkó A, Nagy JB, Kiricsi I (2003) Mater Chem Phys 77:536

    Article  CAS  Google Scholar 

  3. Hernadi K (2002) Chem Phys Lett 363:169

    Article  CAS  Google Scholar 

  4. Gournis D, Karakassides MA, Bakas T, Boukos N, Petridis D (2003) Carbon 40:2641

    Article  Google Scholar 

  5. Jankovic L, Gournis D, Dimos K, Karakassides MA, Bakas T (2005) J Phys Conf Series 10:178

    Article  CAS  Google Scholar 

  6. Gil A, Gandia LM, Vicente MA (2000) Catal Rev Sci Eng 42:212

    Article  Google Scholar 

  7. Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW (1993) J Phys Chem Solids 54:1841

    Article  CAS  Google Scholar 

  8. Pinnavaia TJ, Tzou MS, Landau SD, Raythatha RH (1984) J Mol Catal 27:195

    Article  CAS  Google Scholar 

  9. Weaver CE, Pollard LD (1973) The chemistry of clay minerals developments in sedimentology, vol 15. Elsevier, New York, p 213

    Google Scholar 

  10. Bakandritsos A, Simopoulos A, Petridis D (2006) Nanotechnology 17:1112

    Article  CAS  Google Scholar 

  11. Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 332

    Google Scholar 

  12. Thorez J (1976) Practical identification of clay minerals. A handbook for teachers and students in clay mineralogy. Lelotte, Dison, Belgium, p 90

    Google Scholar 

  13. Velde B (1992) Introduction to the clay minerals. Chapman and Hall, London, p 198

    Google Scholar 

  14. Önal M, Sarikaya Y, Alemdaroglu T, Bozdogan I (2003) Turk J Chem 27:683

    Google Scholar 

  15. Girgis BS, El Barawy KA, Felix NS (1987) Thermochim Acta 111:9

    Article  CAS  Google Scholar 

  16. Van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) (2001) Studies in surface science and catalysis, vol 137. Elsevier, Amsterdam

  17. Storaro L, Lenarda M, Ganzerla R, Rinaldi A (1996) Microporous Mater 6:55

    Article  CAS  Google Scholar 

  18. Ebbinghaus SG, Mauron PH, Reller A, Zhang Y, Zuttel A (2002) Mater Sci Eng C 19:119

    Article  Google Scholar 

  19. Nagy JB, Bister G, Fonseca A, Méhn D, Konya Z, Kiricsi I, Horvath ZE, Biro LP (2004) J Nanosci Nanotech 4:326

    Article  CAS  Google Scholar 

  20. Murad E, Johnston JH (1987) In: Long GJ (ed) Mössbauer spectroscopy applied to inorganic chemistry, vol 2. Plenum Press, New York, p 507

    Google Scholar 

  21. Coquay P, Vandenberghe RE, De Grave E, Fonseca A, Piedigrosso P, Nagy JB (2002) J Appl Phys 92:1286

    Article  CAS  Google Scholar 

  22. Gangas NH, Simopoulos A, Kostikas A, Yassoglou NJ, Filippakis S (1973) Clays Clay Minerals 21:151

    Article  CAS  Google Scholar 

  23. Rozenson I, Heller-Kallai L (1976) Clays Clay Minerals 24:271

    Article  CAS  Google Scholar 

  24. Reis AS Jr, Ardisson JD (2003) Clays Clay Minerals 51:33

    Article  CAS  Google Scholar 

  25. Coey JMD (1984) In: Long GJ (ed) Mössbauer spectroscopy applied to inorganic chemistry, vol 1. Plenum Press, New York, p 443

    Google Scholar 

  26. Badreddine R, Grandjean F, Vandormael D, Fransolet AM, Long GJ (2000) Clay Minerals 35:653

    Article  CAS  Google Scholar 

  27. Methasiri T, Yoodee K, Tang IM (1980) Physica B 101:243

    Article  CAS  Google Scholar 

  28. Tessonnier JP, Winé G, Estournès C, Leuvrey C, Ledoux MJ, Pham-Huu C (2005) Catal Today 102–103:29

    Article  Google Scholar 

  29. Schuele WJ, Shtrikman S, Treves D (1965) J Appl Phys 36:1010

    Article  CAS  Google Scholar 

  30. Skoutelas AP, Karakassides MA, Petridis D (1999) Chem Mater 11:2754

    Article  CAS  Google Scholar 

  31. Bakandritsos A, Simopoulos A, Petridis D (2005) Chem Mater 17:3468

    Article  CAS  Google Scholar 

  32. Pérez-Cabero M, Taboada JB, Guerrero-Ruiz A, Overweg AR, Rodriguez-Ramos I (2006) Phys Chem Chem Phys 8:1230

    Article  Google Scholar 

  33. Johnson CE, Ridout MS, Cranshaw TE, Madsen PE (1961) Phys Rev Lett 6:450

    Article  CAS  Google Scholar 

  34. Mancier V, Delplancke JL, Delwiche J, Hubin-Franskin MJ, Piquer C, Rebbouh L, Grandjean F (2004) J Magn Magn Mater 281:27

    Article  CAS  Google Scholar 

  35. Delplancke JL, Dille J, Reisse J, Long GJ, Mohan A, Grandjean F (2000) Chem Mater 12:946

    Article  CAS  Google Scholar 

  36. Dong XL, Zhang ZD, Jin SR, Kim BK (2000) J Magn Magn Mater 210:143

    Article  CAS  Google Scholar 

  37. Da Silva Borchardt F (2004) Master’s thesis, Univ Pittsburg, etd.library.pitt.edu/ETD/available/etd-10132004-194232

  38. Kanetsuk Y, Ibaraki N, Ashida S (1991) ISIJ Int 31:304

    Google Scholar 

  39. Ruskov T, Asenov S, Spirov I, Garcia C, Mönch I, Graff A, Kozhuharova R, Leonhardt A, Mühl T, Ritschel M, Schneider C, Groudeva-Zotova S (2004) J Appl Phys 96:7514

    Article  CAS  Google Scholar 

  40. Tokiro H, Fujii S, Muto S, Nasu S (2006) J Appl Phys 99:08Q512

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Nathalie Fagel, Dr. Leïla Rebbouh, and Prof. André Rulmont for their help during the course of this work and the referee for helpful comments. The authors acknowledge the financial support of the Ministère de la Région Wallone for grant number RW/115012 and the BINANOCO project, and of the Fonds National de la Recherche Scientifique, Belgium for grant 1.5.064.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernande Grandjean.

Appendix

Appendix

Table A1 Mössbauer spectral parameters for cloisite and sample 3a
Table A2 Mössbauer spectral parameters for cloisite and sample 4a
Table A3 Mössbauer spectral parameters for cloisite and sample 4b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destrée, A., Long, G.J., Vatovez, B. et al. Synthesis and characterization of carbon nanotubes grown on montmorillonite clay catalysts. J Mater Sci 42, 8671–8689 (2007). https://doi.org/10.1007/s10853-007-1808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1808-2

Keywords

Navigation