Journal of Materials Science

, Volume 42, Issue 14, pp 5299–5306 | Cite as

Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size

  • Naoki Shimura
  • Makoto OgawaEmail author


Monodispersed nanoporous silica spherical particles with the particle size ranges from 0.01 μm to 1.5 μm were successfully prepared by the Stöber method combined with supramolecular templating approach. The particles formed from homogeneous solutions containing tetraethoxysilane, cetyltrimethylammonium chloride, methanol, and aqueous ammonia solution at room temperature. In the present study, methanol/tetraethoxysilane ratio was the factor to control the particle size. With increasing the methanol/tetraethoxysilane ratios from 1,125 to 6,000, particle size decreased from 1.5 μm to 0.01 μm. The calcination of the particles resulted in the spherical porous silicas with the average pore sizes of around 2.0 nm irrespective of the particle size. The particle morphology retained after the calcination.


CTAC Narrow Particle Size Distribution Aqueous Ammonia Solution Nanoporous Silica Wide Size Range 



This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government. Waseda University (as a special research project) and Tokuyama Science and Technology Foundation also supported us financially.


  1. 1.
    Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403CrossRefGoogle Scholar
  2. 2.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151CrossRefGoogle Scholar
  3. 3.
    On DT, Desplantier-Giscard D, Danumah C, Kaliaguine S (2001) Appl Catal A 222:299CrossRefGoogle Scholar
  4. 4.
    Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77:1CrossRefGoogle Scholar
  5. 5.
    Inagaki S (2004) Studies Surf Catal 148:109CrossRefGoogle Scholar
  6. 6.
    Ogawa M (2002) J Photochem Photobiol C Photochem Rev 3:129CrossRefGoogle Scholar
  7. 7.
    Ogawa M (1994) J Am Chem Soc 116:7941CrossRefGoogle Scholar
  8. 8.
    Ogawa M Chem Commun 1149 (1996)Google Scholar
  9. 9.
    Melosh NA, Davidson P, Feng P, Pine DJ, Chmelka BF (2001) J Am Chem Soc 123:1240CrossRefGoogle Scholar
  10. 10.
    Wang J, Tsung C-K, Hong W, Wu Y, Tang J, Stucky GD (2004) Chem Mater 16:5169CrossRefGoogle Scholar
  11. 11.
    Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson GH, Chmelka BF (1999) Macromolecules 32:4332CrossRefGoogle Scholar
  12. 12.
    Tanev PT, Liang Y, Pinnavaia TJ (1997) J Am Chem Soc 119:8616CrossRefGoogle Scholar
  13. 13.
    Mesa M, Sierra L, López B, Ramirez A, Guth J-L (2003) Solid State Sci 5:1303CrossRefGoogle Scholar
  14. 14.
    Martin T, Galarneau A, Renzo FD, Brunel D, Fajula F, Heinisch S, Crétier G, Rocca J-L (2004) Chem Mater 16:1725CrossRefGoogle Scholar
  15. 15.
    Huo Q, Feng J, Schüth F, Stucky GD (1997) Chem Mater 9:14CrossRefGoogle Scholar
  16. 16.
    Yang SM, Coombs N, Ozin GA (2000) Adv Mater 12:1940CrossRefGoogle Scholar
  17. 17.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223CrossRefGoogle Scholar
  18. 18.
    Rao GVR, López GP, Bravo J, Pham H, Datye AK, Xu H, Ward TL (2002) Adv Mater 14:1301CrossRefGoogle Scholar
  19. 19.
    Bore MT, Rathod SB, Ward TL, Datye AK (2003) Langmuir 19:256CrossRefGoogle Scholar
  20. 20.
    Fu Q, Rao GVR, Ista LK, Wu Y, Andrzejewski BP, Sklar LA, Ward TL, López GP (2003) Adv Mater 15:1262CrossRefGoogle Scholar
  21. 21.
    Anderson N, Alberius PCA, Pedersen JS, Bergström L (2004) Microporous Mesoporous Mater 72:175CrossRefGoogle Scholar
  22. 22.
    Hampsey JE, Arsenault S, Hu Q, Lu Y (2005) Chem Mater 17:2475CrossRefGoogle Scholar
  23. 23.
    Grün M, Lauer I, Unger KK (1997) Adv Mater 9:254CrossRefGoogle Scholar
  24. 24.
    Schumacher K, Grün M, Unger KK (1999) Microporous Mesoporous Mater 27:201CrossRefGoogle Scholar
  25. 25.
    Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Microporous Mesoporous Mater 27:207CrossRefGoogle Scholar
  26. 26.
    Schumacher K, Hohenesche CDFV, Unger KK, Ulrich R, Chesne AD, Wiesner U, Spiess HW (1999) Adv Mater 11:1194CrossRefGoogle Scholar
  27. 27.
    Grün M, Büchel G, Kumar D, Schumacher K, Bidlingmaier B, Unger KK (2000) Stud Surf Sci Catal 128:155CrossRefGoogle Scholar
  28. 28.
    Schumacher K, Renker S, Unger KK, Ulrich R, Chesne AD, Spiess HW, Wiesner U (2000) Stud Surf Sci Catal 129:1CrossRefGoogle Scholar
  29. 29.
    Luo Q, Li L, Xue Z, Zhao D (2000) Stud Surf Sci Catal 129:37CrossRefGoogle Scholar
  30. 30.
    Pauwels B, Tendeloo GV, Thoelen C, Rhijn WV, Jacobs PA (2001) Adv Mater 13:1317CrossRefGoogle Scholar
  31. 31.
    Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Chem Mater 14:4721CrossRefGoogle Scholar
  32. 32.
    Tendeloo GV, Lebedev OI, Collart O, Cool P, Vansant EF (2003) J Phys Condens Matter 15:S3037CrossRefGoogle Scholar
  33. 33.
    Liu S, Cool P, Collart O, Voort PVD, Vansant EF, Lebedev OI, Tendeloo GV, Jiang M (2003) J Phys Chem B 107:10405CrossRefGoogle Scholar
  34. 34.
    Walcarius A, Sayen S, Gérardin C, Hamdoune F, Rodehüser L (2004) Colloids Int A 234:145CrossRefGoogle Scholar
  35. 35.
    Lebedev OI, Tendeloo GV, Collart O, Cool P, Vansant EF (2004) Solid State Sci 6:489CrossRefGoogle Scholar
  36. 36.
    Tan B, Rankin SE (2004) J Phys Chem B 108:20122CrossRefGoogle Scholar
  37. 37.
    Shimura N, Ogawa M (2005) Bull Chem Soc Jpn 78:1154CrossRefGoogle Scholar
  38. 38.
    Schacht S, Huo Q, Voigt-Martin IG, Stucky GD, Schüth F (1996) Science 273:768CrossRefGoogle Scholar
  39. 39.
    Yano K, Fukushima Y (2004) J Mater Chem 14:1579CrossRefGoogle Scholar
  40. 40.
    Lin H-P, Mou C-Y (1996) Science 273:765CrossRefGoogle Scholar
  41. 41.
    Lin H-P, Chen Y-R, Mou C-Y (1998) Chem Mater 10:3772CrossRefGoogle Scholar
  42. 42.
    Imai H, Takahashi N, Tamura R, Hirashima H (2001) Langmuir 17:17CrossRefGoogle Scholar
  43. 43.
    Yang H, Coombs N, Ozin GA (1997) Nature 386:692CrossRefGoogle Scholar
  44. 44.
    Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Nature 429:281CrossRefGoogle Scholar
  45. 45.
    Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R (2000) Nature 408:449CrossRefGoogle Scholar
  46. 46.
    Stöber W, Fink A, Bohn E (1968) J Colloid Int Sci 26:62CrossRefGoogle Scholar
  47. 47.
    Bogush GH, Tracy MA, Zukoski CF IV (1988) J Non-Cryst Solids 104:95CrossRefGoogle Scholar
  48. 48.
    Bogush GH, Zukoski CF IV (1991) J Colloid Int Sci 142:1CrossRefGoogle Scholar
  49. 49.
    Keene MTJ, Gougeon RDM, Denoyel R, Harris RK, Rouquerol J, Llewellyn PL (1999) J Mater Chem 9:2843CrossRefGoogle Scholar
  50. 50.
    Kleitz F, Schmidt W, Schüth F (2003) Microporous Mesoporous Mater 65:1CrossRefGoogle Scholar
  51. 51.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  52. 52.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Department of Earth SciencesWaseda UniversityTokyoJapan

Personalised recommendations