Skip to main content

Mechanical properties of porous crosslinked poly(ethyl-acrylate) for tissue engineering

Abstract

Scaffolds of crosslinked poly(ethyl-acrylate) were prepared by polymerizing the monomer over a template made from Nylon fabrics compressed with different pressures; cylindrical pores in three dimensions of around 80 microns were obtained. Sample porosity and their mechanical, thermal and morphological properties were measured. Different models were analysed with the finite element method, studying the effect of the pore size and geometry on the effective properties of the scaffolds. The diameter of the pore did not influence the effective mechanical properties of the scaffold. The densification on compression of the scaffold due to pore collapse was identified on the stress–strain curve, and a correlation between the onset of this process on that curve and scaffold porosity was established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Rodriguez AM, Vacanti CA (1998) In: Patrick CW Jr., Mikos AG, McIntire LV (eds) Frontiers in tissue engineering. Pergamon 1998

  2. Hutmacher DW (2000) Biomaterials 21:2529

    Article  CAS  Google Scholar 

  3. Temenoff JS, Mikos AG (2000) Biomaterials 21:431

    Article  CAS  Google Scholar 

  4. Cao Y, Rodríguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA In: Shoichet MS, Hubbell JA (eds) Polymers in Tissue Engineering. VSP 1998

  5. Hutmacher DW (2001) J Biomat Sci Polym 12:107

    Article  CAS  Google Scholar 

  6. Francis Suh JK, Matthew HWT (2000) Biomaterials 21:2589

    Article  CAS  Google Scholar 

  7. Rudert M, Hirschmann F, Schulze M, Wirth CJ (2000) Cells Tissues Organs 167:95

    Article  CAS  Google Scholar 

  8. Bryant SJ, Anseth KS (2001) Biomaterials 22:619

    Article  CAS  Google Scholar 

  9. Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F, Vittur F (2000) Biomaterials 21:795

    Article  CAS  Google Scholar 

  10. Hutcheon GA, Messiou C, Wyre RM, Davies MC, Downes S (2001) Biomaterials 22:667

    Article  CAS  Google Scholar 

  11. Wyre RM, Downes S (2000) Biomaterials 21:335

    Article  CAS  Google Scholar 

  12. Haisch A, Groger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, Jahnke V, Burmester GR, Sittinger M (2000) Biomaterials 21:1561

    Article  CAS  Google Scholar 

  13. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE (1998) Biotech Prog 14:193

    Article  CAS  Google Scholar 

  14. Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A (1998) J Biomed Mat Res 42:172

    Article  CAS  Google Scholar 

  15. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) J Biomed Mat Res 34:211

    Article  CAS  Google Scholar 

  16. Vacanti CA, Cima LG, Ratkowski D, Upton J, Vacanti JP (1992) Mat Res Soc Symp Proc 252:367

    CAS  Google Scholar 

  17. Yang S, Leong K-F, Du Z, Chua C-K (2001) Tissue Eng 7(6):679

    Article  CAS  Google Scholar 

  18. Gallego Ferrer G, Salmerón Sánchez M, Gómez Ribelles JL, Romero Colomer FJ, Monleón Pradas M, Eur. Polym. J. (in press)

  19. Rault J, Lucas A, Neffati R, Monleón Pradas M (1997) Macromolecules 30:7866

    Article  Google Scholar 

  20. Gallego Ferrer G, Monleón Pradas M, Gómez Ribelles JL, Pissis P (1998) J Non-Cryst Solids 235–237:692

    Article  Google Scholar 

  21. Gibson LJ, Ashby MF (1997) In: Cellular solids: structure and properties 2nd Ed. Cambridge University Press, Cambridge, U.K., p 176

  22. Gibson LJ, Ashby MF (1997) In: Cellular solids: structure and properties 2nd Ed. Cambridge University Press, Cambridge, U.K., p 208

  23. ANSYS, Inc., Canonsburg, PA, USA, http://www.ansys.com, as on 13 July 2006

  24. Fang Z, Starly B, Sun W (2005) Computer-Aided Des 37:65

    Article  Google Scholar 

  25. Brígido Diego R, Más Estellés J, Sanz JA, García-Aznar JM, Salmerón Sánchez M (2007) J. Biomed. Mater. Res. B 81B:448

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Education through the MAT2002-04239-C03-03 grant. JME acknowledges the Universidad Politécnica de Valencia (UPV, Spain) for its support through grant PPI-00-04 and the Charles University of Prague (Czech Republic) for the use of their resources; AMP held an Erasmus grant at the ETSII of Valencia during the completion of this work. We thank the personnel of the Microscopy Service of the UPV, and Mr. Fernando Más for his help in revising the english.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Más Estellés.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Más Estellés, J., Krakovsky, I., Rodríguez Hernández, J.C. et al. Mechanical properties of porous crosslinked poly(ethyl-acrylate) for tissue engineering. J Mater Sci 42, 8629–8635 (2007). https://doi.org/10.1007/s10853-007-1727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1727-2

Keywords

  • EGDMA
  • Pore Geometry
  • Porous Sample
  • Nylon Fabric
  • Pore Collapse