Characterization of starch based nanocomposites

Abstract

The goal of this study was to characterize the nanostructure and the properties of starch based nanocomposites with either cellulose nano whiskers (CNW) or layered silicates (LS) (synthetic hectorite) as reinforcements. Modified potato starch was used as matrix with water and sorbitol as plasticizers and with 5 wt.% of either of the reinforcements. Two methods were explored to prepare samples for transmission electron microscopy (TEM) examination; chemical fixation and freeze etching. It was possible to characterize the nanostructure both parallel and perpendicular to the nanocomposite surface by the freeze etching technique. Both nanocomposites showed well-distributed reinforcements in the starch matrix. Dynamic mechanical thermal analysis showed that the storage modulus was significantly improved at elevated temperatures, especially for the layered silicate nanocomposite. Both nanocomposites showed a significant improvement in tensile properties compared to the pure matrix.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig. 12

References

  1. 1.

    Mohanty AK, Drzal LT, Misra M (2003) Polym Mater Sci Eng 88:60

    CAS  Google Scholar 

  2. 2.

    Lu Y, Weng L, Cao X (2006) Carbohydr Polym 63:198

    CAS  Article  Google Scholar 

  3. 3.

    Lu Y, Weng L, Cao X (2005) Macromol Biosci 5:1101

    CAS  Article  Google Scholar 

  4. 4.

    Mathew AP, Dufresne A (2002) Biomacromolecules 3:609

    CAS  Article  Google Scholar 

  5. 5.

    Anglès MN, Dufresne A (2000) Macromolecules 33:8344

    Article  Google Scholar 

  6. 6.

    Anglès MN, Dufresne A (2001) Macromolecules 34:2921

    Article  Google Scholar 

  7. 7.

    Liao H-T, Wu C-S (2005) J Appl Polym Sci 97:397

    CAS  Article  Google Scholar 

  8. 8.

    Chen B, Evans JRG (2005) Carbohydr Polym 61:455

    CAS  Article  Google Scholar 

  9. 9.

    Chen M, Chen B, Evans JRG (2005) Nanotechnology 16:2334

    CAS  Article  Google Scholar 

  10. 10.

    Pandey JK, Singh RP (2005) Starch/Stärke 57:8

    CAS  Article  Google Scholar 

  11. 11.

    Park H-M, Lee W-K, Park C-Y, Cho W-J, Ha C-SJ (2003) J Mater Sci 38:909, DOI: 10.1023/A:1022308705231

    CAS  Article  Google Scholar 

  12. 12.

    Wilhelm H-M, Sierakowski M-R, Souza GP, Wypych F (2003) Carbohydr Polym 52:101

    CAS  Article  Google Scholar 

  13. 13.

    Ray SS, Okamoto M (2003) Progr Polym Sci 28:1539

    CAS  Article  Google Scholar 

  14. 14.

    Gluert AM (1975) Practical methods in electron microscopy. North Holland Publishing Company

  15. 15.

    Zhu Z, Cao S (2004) Text Res J 74(3):253

    CAS  Article  Google Scholar 

  16. 16.

    Rindlav-Westling Å, Stading M, Gatenholm P (2002) Biomacromolecules 3:84

    CAS  Article  Google Scholar 

  17. 17.

    Grote M (1992) Microsc Res Tech 21:242

    CAS  Article  Google Scholar 

  18. 18.

    Sawyer LC, Grubb DT (1994) Polymer microscopy. Chapman and Hall, London

  19. 19.

    Jansson A, Järnström L (2005) Cellulose 12:23

    Article  Google Scholar 

  20. 20.

    Bondeson D, Mathew A, Oksman K (2006) Cellulose 13(2):171

    CAS  Article  Google Scholar 

  21. 21.

    Kvien I, Tanem BS, Oksman K (2005) Biomacromolecules 6(6):3160

    CAS  Article  Google Scholar 

  22. 22.

    Hermansson AM, Svegmark K (1996) Trends Food Sci Technol 7:345

    CAS  Article  Google Scholar 

  23. 23.

    Heux L, Chauve G, Bonini C (2000) Langmuir 16:8210

    CAS  Article  Google Scholar 

  24. 24.

    Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) Carbohydr Polym 43:33

    CAS  Article  Google Scholar 

  25. 25.

    Butler MF, Cameron RE (2000) Polymer 41:2249

    CAS  Article  Google Scholar 

  26. 26.

    Mathew AP, Dufresne A (2002) Biomacromolecules 3:1101

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Borregaard AS (Sarpsborg, Norway) is acknowledged for the MCC and Lyckeby Industrial AB (Kristianstad, Sweden) is acknowledged for the starch. The Norwegian Research Council under the NANOMAT program is acknowledged for financial support of this work. The Laboratory of Active Biobased Materials at RISH, Kyoto University, Japan, and in particular Professor Hiroyuki Yano and Shin-ichirou Iwamoto are acknowledged for providing equipment and help with the formaldehyde treatment of starch. A special thanks to Chiori Itoh and Dr. Thi Thi Nge at The Laboratory of Biomass Morphogenesis and Information at the Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, for all the help with sample preparation and TEM observations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristiina Oksman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kvien, I., Sugiyama, J., Votrubec, M. et al. Characterization of starch based nanocomposites. J Mater Sci 42, 8163–8171 (2007). https://doi.org/10.1007/s10853-007-1699-2

Download citation

Keywords

  • Starch
  • Storage Modulus
  • Dynamic Mechanical Thermal Analysis
  • Layered Silicate
  • Dynamic Mechanical Thermal Analysis