Journal of Materials Science

, Volume 42, Issue 19, pp 8163–8171 | Cite as

Characterization of starch based nanocomposites

  • Ingvild Kvien
  • Junji Sugiyama
  • Martin Votrubec
  • Kristiina OksmanEmail author


The goal of this study was to characterize the nanostructure and the properties of starch based nanocomposites with either cellulose nano whiskers (CNW) or layered silicates (LS) (synthetic hectorite) as reinforcements. Modified potato starch was used as matrix with water and sorbitol as plasticizers and with 5 wt.% of either of the reinforcements. Two methods were explored to prepare samples for transmission electron microscopy (TEM) examination; chemical fixation and freeze etching. It was possible to characterize the nanostructure both parallel and perpendicular to the nanocomposite surface by the freeze etching technique. Both nanocomposites showed well-distributed reinforcements in the starch matrix. Dynamic mechanical thermal analysis showed that the storage modulus was significantly improved at elevated temperatures, especially for the layered silicate nanocomposite. Both nanocomposites showed a significant improvement in tensile properties compared to the pure matrix.


Starch Storage Modulus Dynamic Mechanical Thermal Analysis Layered Silicate Dynamic Mechanical Thermal Analysis 



Borregaard AS (Sarpsborg, Norway) is acknowledged for the MCC and Lyckeby Industrial AB (Kristianstad, Sweden) is acknowledged for the starch. The Norwegian Research Council under the NANOMAT program is acknowledged for financial support of this work. The Laboratory of Active Biobased Materials at RISH, Kyoto University, Japan, and in particular Professor Hiroyuki Yano and Shin-ichirou Iwamoto are acknowledged for providing equipment and help with the formaldehyde treatment of starch. A special thanks to Chiori Itoh and Dr. Thi Thi Nge at The Laboratory of Biomass Morphogenesis and Information at the Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, for all the help with sample preparation and TEM observations.


  1. 1.
    Mohanty AK, Drzal LT, Misra M (2003) Polym Mater Sci Eng 88:60Google Scholar
  2. 2.
    Lu Y, Weng L, Cao X (2006) Carbohydr Polym 63:198CrossRefGoogle Scholar
  3. 3.
    Lu Y, Weng L, Cao X (2005) Macromol Biosci 5:1101CrossRefGoogle Scholar
  4. 4.
    Mathew AP, Dufresne A (2002) Biomacromolecules 3:609CrossRefGoogle Scholar
  5. 5.
    Anglès MN, Dufresne A (2000) Macromolecules 33:8344CrossRefGoogle Scholar
  6. 6.
    Anglès MN, Dufresne A (2001) Macromolecules 34:2921CrossRefGoogle Scholar
  7. 7.
    Liao H-T, Wu C-S (2005) J Appl Polym Sci 97:397CrossRefGoogle Scholar
  8. 8.
    Chen B, Evans JRG (2005) Carbohydr Polym 61:455CrossRefGoogle Scholar
  9. 9.
    Chen M, Chen B, Evans JRG (2005) Nanotechnology 16:2334CrossRefGoogle Scholar
  10. 10.
    Pandey JK, Singh RP (2005) Starch/Stärke 57:8CrossRefGoogle Scholar
  11. 11.
    Park H-M, Lee W-K, Park C-Y, Cho W-J, Ha C-SJ (2003) J Mater Sci 38:909, DOI: 10.1023/A:1022308705231CrossRefGoogle Scholar
  12. 12.
    Wilhelm H-M, Sierakowski M-R, Souza GP, Wypych F (2003) Carbohydr Polym 52:101CrossRefGoogle Scholar
  13. 13.
    Ray SS, Okamoto M (2003) Progr Polym Sci 28:1539CrossRefGoogle Scholar
  14. 14.
    Gluert AM (1975) Practical methods in electron microscopy. North Holland Publishing CompanyGoogle Scholar
  15. 15.
    Zhu Z, Cao S (2004) Text Res J 74(3):253CrossRefGoogle Scholar
  16. 16.
    Rindlav-Westling Å, Stading M, Gatenholm P (2002) Biomacromolecules 3:84CrossRefGoogle Scholar
  17. 17.
    Grote M (1992) Microsc Res Tech 21:242CrossRefGoogle Scholar
  18. 18.
    Sawyer LC, Grubb DT (1994) Polymer microscopy. Chapman and Hall, LondonGoogle Scholar
  19. 19.
    Jansson A, Järnström L (2005) Cellulose 12:23CrossRefGoogle Scholar
  20. 20.
    Bondeson D, Mathew A, Oksman K (2006) Cellulose 13(2):171CrossRefGoogle Scholar
  21. 21.
    Kvien I, Tanem BS, Oksman K (2005) Biomacromolecules 6(6):3160CrossRefGoogle Scholar
  22. 22.
    Hermansson AM, Svegmark K (1996) Trends Food Sci Technol 7:345CrossRefGoogle Scholar
  23. 23.
    Heux L, Chauve G, Bonini C (2000) Langmuir 16:8210CrossRefGoogle Scholar
  24. 24.
    Gaudin S, Lourdin D, Forssell PM, Colonna P (2000) Carbohydr Polym 43:33CrossRefGoogle Scholar
  25. 25.
    Butler MF, Cameron RE (2000) Polymer 41:2249CrossRefGoogle Scholar
  26. 26.
    Mathew AP, Dufresne A (2002) Biomacromolecules 3:1101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ingvild Kvien
    • 1
  • Junji Sugiyama
    • 2
  • Martin Votrubec
    • 1
  • Kristiina Oksman
    • 1
    • 3
    Email author
  1. 1.Department of Engineering Design and MaterialsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Research Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiJapan
  3. 3.Division of Manufacturing and Design of Wood and BionanocompositesLuleå University of TechnologySkellefteaSweden

Personalised recommendations