Journal of Materials Science

, Volume 42, Issue 21, pp 8974–8985 | Cite as

Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers

  • Florence Teulé
  • William A. Furin
  • Alyssa R. Cooper
  • Joshua R. Duncan
  • Randolph V. Lewis
Nano- and micromechanical properties of hierarchical biological materials

Abstract

Bacteria were genetically engineered to produce two spider silk protein variants composed of basic repeat units combining a flagelliform elastic motif ([GPGGX]4) and a major ampullate silk strength motif ([linker/poly-alanine]. The secondary structures of the pure recombinant proteins in solution were determined by circular dichroism. The data presented suggest that the nature of the 5th and 10th amino acid (X) in the [GPGGX]2 elastic motif and temperature have an impact on the amount of β-sheet structures present in the proteins. More specifically, increasing temperatures seem to be positively correlated with β-sheet formation for both proteins and this state is irreversible or reversible when both X (5th and 10th) in the elastic motif are hydrophilic or hydrophobic respectively. Moreover, each pure silk-like protein was able to spontaneously self-assemble into films from aqueous solutions. Two kinds of synthetic fibers were made by pulling fibers from these preassembled films as well as spinning fibers from each protein resolubilized in HFIP. The mechanical data show that the pulled fibers are far tougher than the spun fibers suggesting a better fiber organization.

Supplementary material

10853_2007_1642_MOESM1_ESM.doc (116 kb)
(DOC 115 kb)

References

  1. 1.
    Gosline J, Denny M, DeMont M (1984) Nature 309:551CrossRefGoogle Scholar
  2. 2.
    Stauffer S, Coguill S, Lewis R (1994) J Arachnol 22:5Google Scholar
  3. 3.
    Gosline J, Guerette P, Ortlepp C, Savage K (1999) J Exp Biol 202:3295Google Scholar
  4. 4.
    Denny M (1976) J Exp Biol 65:483Google Scholar
  5. 5.
    Hinman M, Lewis R (1992) J Biol Chem 267:19320Google Scholar
  6. 6.
    Hayashi C, Shipley N, Lewis R (1999) Int J Biol Macromol 24:271CrossRefGoogle Scholar
  7. 7.
    Simmons A, Michal C, Jelinski L (1996) Science 271:84CrossRefGoogle Scholar
  8. 8.
    Termonia Y (1994) Macromolecules 27:7378CrossRefGoogle Scholar
  9. 9.
    Hayashi C, Lewis R (1998) Mol Biol 275:773CrossRefGoogle Scholar
  10. 10.
    Hayashi C, Lewis R (2000) Science 287:1477CrossRefGoogle Scholar
  11. 11.
    Becker N, Oroudjev E, Mutz S, Cleveland J, Hansma P, Hayashi C, Makarov D, Hansma H (2003) Nat Mater 2:278CrossRefGoogle Scholar
  12. 12.
    Hayashi C, Lewis R (2001) BioEssays 23:750CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Wu S, Conticello V (2001) Biomacromolecules 2:111CrossRefGoogle Scholar
  14. 14.
    Chang D, Ventachalam C, Prasad K, Urry D (1989) J Biomol Struct Dynamics 6(i5):851Google Scholar
  15. 15.
    Urry D, Shaw R, Prasad K (1985) Biochem Biophys Res Commun 130(i1):50CrossRefGoogle Scholar
  16. 16.
    Urry D, Hugel T, Seitz M, Gaub H, Sheiba L, Dea J, Xu J, Parker T (2002) Phylos Trans R Soc London, Ser B 357(i1418):169CrossRefGoogle Scholar
  17. 17.
    Tatham A, Hayes L, Shewry P, Urry D (2001) Biochim Biophys Acta 1548:187Google Scholar
  18. 18.
    Hutchinson E, Thornton J (1994) Protein Sci 3:2207CrossRefGoogle Scholar
  19. 19.
    Wilmot C, Thornton J (1988) J Mol Biol 5:221CrossRefGoogle Scholar
  20. 20.
    Lewis R, Hinman M, Kothakota S, Fournier M (1996) Protein Expr Purif 7:400CrossRefGoogle Scholar
  21. 21.
    Birnboim H, Doly J (1979) Nucleic Acids Res 7:1513CrossRefGoogle Scholar
  22. 22.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Second Edn. Cold Spring Harbor LaboratoryGoogle Scholar
  23. 23.
    Wong C, Sridhara S, Bardwell J, Jakob U (2000) BioTechniques 28:426Google Scholar
  24. 24.
    Whithmore L, Wallace B (2004) Nucleic Acids Res, Web Server issue 24:W668Google Scholar
  25. 25.
    Scheller J, Guhrs K, Grosse F, Conrad U (2001) Nature 19:573CrossRefGoogle Scholar
  26. 26.
    Teulé F, Jung S, Wood J, Marcotte W, Ellison M, Abbott A (2002) In: Brebbia C, Sucharov L, Pascolo P (eds) Design and nature, Udine, Italy. WIT press, p 379Google Scholar
  27. 27.
    Prince J, McGrath K, DiGirolamo C, Kaplan D (1995) Biochemistry 34:10879CrossRefGoogle Scholar
  28. 28.
    Fahnestock S, Irvin S (1997) Appl Microbiol Biotechnol 47:23CrossRefGoogle Scholar
  29. 29.
    Fahnestock S, Bedzyk L (1997) Appl Microbiol Biotechnol 47:33CrossRefGoogle Scholar
  30. 30.
    Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Appl Microbiol Biotechnol 49:31CrossRefGoogle Scholar
  31. 31.
    Dicko C, Knight D, Kenney J, Vollrath F (2004) Biomacromolecules 5:2105CrossRefGoogle Scholar
  32. 32.
    Vollrath F, Knight D (2001) Nature 410:541CrossRefGoogle Scholar
  33. 33.
    Knight D, Vollrath F (2001) Naturwissenschaften 88:179CrossRefGoogle Scholar
  34. 34.
    Robson P, Wright G, Sitarz E, Maiti A, Rawa M, Youson J, Keeley F (1993) J Biol Chem 268(2):1440Google Scholar
  35. 35.
    Rauscher S, Baud S, Miao M, Keeley F, Pomès R (2006) Structure 14:1667CrossRefGoogle Scholar
  36. 36.
    Creighton T (1993) Proteins: structures and molecular properties, Second Edn. Freeman, New YorkGoogle Scholar
  37. 37.
    Haq S, Khan R (2005) Int J Biol Biomacromolecules 36:47CrossRefGoogle Scholar
  38. 38.
    Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Biochemistry 44:4727CrossRefGoogle Scholar
  39. 39.
    Xu M, Lewis R (1990) Proc Natl Acad Sci USA 87:7120CrossRefGoogle Scholar
  40. 40.
    Chen X, Shao Z, Vollrath F (2006) Soft Matter 2:448CrossRefGoogle Scholar
  41. 41.
    Blackledge T, Hayashi C (2006) J Exp Biol 209:2452CrossRefGoogle Scholar
  42. 42.
    Blackledge T, Hayashi C (2006) J Exp Biol 209:3131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Florence Teulé
    • 1
  • William A. Furin
    • 1
  • Alyssa R. Cooper
    • 1
  • Joshua R. Duncan
    • 1
  • Randolph V. Lewis
    • 1
  1. 1.Department of Molecular Biology (Dept. 3944)University of WyomingLaramieUSA

Personalised recommendations