Skip to main content
Log in

Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal stability of polyol-ester-based thermal pastes is evaluated by weight loss, viscosity and thermal contact conductance measurements. A high degree of thermal stability has been attained by using a half-hindered phenolic primary antioxidant and a thiopropionate secondary antioxidant. By using either carbon black or boron nitride particles as the solid component, a thermally conductive paste with a high degree of thermal stability has been attained. The antioxidants cause the residual weight (excluding the solid component) after oven aging at 200 °C for 24 h to increase from 36 to 97 wt.%. They cause the viscosity not to increase upon heating and they reduce the thermal cracking tendency. They do not affect the thermal contact conductance measured across mating surfaces that sandwich the paste. The use of a fully-hindered phenolic primary antioxidant is less effective. Both carbon black and boron nitride serve as antioxidants in the presence of either primary antioxidant or secondary antioxidant at 200 °C, though, in most cases, they degrade the thermal stability in the presence of both primary and secondary antioxidants, particularly at 220 °C. Below 180 °C and in the presence of primary and secondary antioxidants, boron nitride is particularly effective in promoting the thermal stability. Boron nitride paste shows an estimated lifetime of 19 years at 100 °C, compared to 1.3 years for the carbon black paste, and 0.10 year for commercial polyol-ester-based Arctic Silver 5. Carbon black paste has a lower tendency for cracking after heating than boron nitride paste, due to the low volume fraction of the solid component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khatri P (2005) Dry thermal interface material. AOS Thermal Compounds. United States Patent 6,900,163 B2

  2. Arctic Silver Incorporated (2006) https://doi.org/www.arcticsilver.com/PDF/as5msds.pdf, as on Dec. 28, 2006

  3. Zhang SM, Swarthout D, Feng QJ, Petroff L, Noll T, Gelderbloom S, Houtman D, Wall K (2002) In: Thermal and thermomechanical phenomena in electronic systems, 2002. ITHERM 2002. The eighth intersociety conference, p 485

  4. Viswanath R, Wakharkar V, Watwe A, Lebonheur V (2000) Intel Technol J Q3:6

    Google Scholar 

  5. Luo Y-R (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, LLC, p 292

  6. AOS Thermal Compounds (2006) https://doi.org/www.aosco.com/products/heat_sink/index.shtml, as on Dec. 28, 2006

  7. Samson EC, Machirouth SV, Chang JY, Santos I, Hermerding J, Dani A, Prasher R, Song DW (2005) Intel Technol J 9:75

    Article  Google Scholar 

  8. Schaefer T (2006) Esters in synthetic lubricants, https://doi.org/www.hatcocorporation.com/pages/syntheticlubes/aboutesters.htm, as on Dec. 28, 2006

  9. Petronomics Mfg. Group, Inc. (2006) Synthetic lubricant what are they, https://doi.org/www.petronomics.com/syn_what.htm, as on Dec. 28, 2006

  10. Mousavi P, Wang D, Grant CS, Oxenham W, Hauser PJ (2005) Ind Eng Chem Res 44:5455

    Article  CAS  Google Scholar 

  11. Naidu SK, Klaus EE, Duda JL (1984) Ind Eng Chem Res Dev 23:613

    Article  CAS  Google Scholar 

  12. Mousave P, Wang D, Grant CS, Oxenham W, Hauser PJ (2006) Ind Eng Chem Res 45:15

    Article  Google Scholar 

  13. Yachigo S (1992) In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, New York, p 305

    Google Scholar 

  14. Shkol’nikov VM, Tsvetkov ON, Chagina MA, Kolesova GV (1990) J Synth Lubric 7:235

    Article  Google Scholar 

  15. Holcik J, Kosik M (1977) J Polym Sci, Part C. Polymer Symposia 57:191

    Article  Google Scholar 

  16. Oysaed H, Jamtvedt S, Frohaug AE (2004) In: Patent Cooperation Treaty Int. Appl., p 39

  17. Leong C-K, Chung DDL (2004) Carbon 42:2323

    Article  CAS  Google Scholar 

  18. Leong C-K, Chung DDL (2003) Carbon 41:2459

    Article  CAS  Google Scholar 

  19. Leong C-K, Aoyagi Y, Chung DDL (2005) J Electron Mater 34:1336

    Article  CAS  Google Scholar 

  20. Chung DDL (2001) J Mater Eng Perform 10:56

    Article  CAS  Google Scholar 

  21. Nsib F, Ayed N, Chevalier Y (2006) Prog Org Coat 55:303

    Article  CAS  Google Scholar 

  22. Leong C-K, Aoyagi Y, Chung DDL (2006) Carbon 44:435

    Article  CAS  Google Scholar 

  23. Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H (1999) Wear 232:199

    Article  CAS  Google Scholar 

  24. Feng QJ, Petroff LJ, Swarthout DE, Zhang S (2006) Thermally conductive phase change materials. Dow Corning Corporation, United States Patent 7074490 B2

  25. Pena JM, Allen NS, Edge M, Liauw CM, Valange B (2001) Polym Degrad Stabil 72:163

    Article  CAS  Google Scholar 

  26. Yamaguchi T, Fukuda K, Sakai M (2005) In: Ohkatsu Y (ed) Total technology of polymer stabilization. CMC Publisher, Tokyo, p 78

    Google Scholar 

  27. Sumitomo Chemical Co. (2006) Product information, https://doi.org/www.sumitomo-chem.co.jp/kaseihin/2product_data/2_11sumilizer.html, as on Dec. 28, 2006

  28. Huang MT, Ishida H (2005) Surf Interface Anal 37:621

    Article  CAS  Google Scholar 

  29. Sauerbrunn S, Gill P (2007) High resolution TGA kinetics, TA Instruments, https://doi.org/www.tainstruments.com/library_download.aspx?file=TA075.PDF, as on Feb. 20, 2007

  30. Nguyen LH, Gu M (2005) Macromol Chem Phys 206:1670

    Article  Google Scholar 

  31. Fambri L, Pegoretti A, Gavazza C, Penati A (2001) J Appl Polym Sci 81:1216

    Article  CAS  Google Scholar 

  32. Vrandecic NS, Andricic BA, Klaric I, Kovacic T (2005) Polym Degrad Stabil 90:455

    Article  Google Scholar 

  33. Gamlina CD, Dutta NK, Choudhury NR, Kehoe D, Matisons J (2002) Thermochim Acta 392–393:357

    Article  Google Scholar 

  34. Hironak S (1988) In: Ohkatsu Y, Okabe H (eds) Development of additives for petroleum products. CMC Publisher, Tokyo, p 77

    Google Scholar 

  35. Shelton JR (1972) In: Hawkins W (ed) Polymer stabilization. Wiley-Interscience, New York, p 80

    Google Scholar 

  36. Yachigo S (1998) In: Ohkatsu Y (ed) Research and development of polymer additives. CMC Publisher, Tokyo, p 37

    Google Scholar 

  37. Yachigo S, Sasaki M, Kojima F (1992) Polym Degrad Stabil 35:105

    Article  CAS  Google Scholar 

  38. Shelton JR (1972) In: Hawkins W (ed) Polymer stabilization. Wiley-Interscience, New York, p 63

    Google Scholar 

  39. Ohkatsu Y (1998) Research and development of polymer additives. CMC Publisher, Tokyo, p 9

    Google Scholar 

  40. Goldberg VM, Kolesnikova NN, Paverman NG, Kavun SM, Stott PE, Gelbin ME (2001) Polym Degrad Stabil 74:371

    Article  CAS  Google Scholar 

  41. Shelton JR (1972) In: Hawkins W (ed) Polymer stabilization. Wiley-Interscience, New York, p 105

    Google Scholar 

  42. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Chemosphere 58:1049

    Article  CAS  Google Scholar 

  43. Ohte Y (2005) In: Ohkatsu Y (ed) Total technology of polymer stabilization. CMC Publisher, Tokyo, p 121

    Google Scholar 

  44. Xu Y, Luo X, Chung DDL (2000) J Electron Packaging 122:128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Technical discussion with Ms. Kanako Fukuda (Sumitomo Chemical Corp., Japan) is gratefully acknowledged. Samples of antioxidants were provided by Sumitomo Chemical Corp. (Japan), Albemarle Corp. (Baton Rouge, LA), and Cytec Industries Inc. (West Paterson, NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoyagi, Y., Chung, D.D.L. Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes. J Mater Sci 42, 2358–2375 (2007). https://doi.org/10.1007/s10853-007-1600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1600-3

Keywords

Navigation