Skip to main content

Gas permeability behavior of mullite-bonded porous silicon carbide ceramics

Abstract

An apparatus was developed to evaluate the gas permeability behavior of mullite (3Al2O3·2SiO2)-bonded porous silicon carbide (SiC) ceramics at room temperature. The permeability was calculated according to Forchheimer’s equation for the compressible gas. It was found that the sintering temperature and graphite (pore former) addition during the fabrication of the porous ceramics affect the permeability extremely by varying the texture of porous ceramics such as the open porosity, pore size distribution and tortuosity of pore channels. The increased sintering temperature results in a decreased Darcian (viscous) permeability but an increased non-Darcian (inertial) permeability. However, more graphite additions lead to the larger Darcian and non-Darcian permeability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Greil P (2002) Adv Mater 14:709

    Article  CAS  Google Scholar 

  2. She JH, Deng ZY, Daniel-Doni J, Ohji T (2002) J Mater Sci 37:3615

    Article  CAS  Google Scholar 

  3. Montanaro L, Jorand Y, Fantozzi G, Negro A (1998) J Eur Ceram Soc 18:1339

    Article  CAS  Google Scholar 

  4. Zhu X, Jiang D, Tan S (2002) Mater Sci Eng A323:232

    CAS  Google Scholar 

  5. Ihle J, Herrmann M, Adle J (2005) J Eur Ceram Soc 25:987

    CAS  Google Scholar 

  6. Ding S, Zhu S, Zeng Y, Jiang D (2006) Ceram Int 32:461

    Article  CAS  Google Scholar 

  7. Zhu X, Jiang D, Tan S (2001) Mater Res Bull 36:2003

    Article  CAS  Google Scholar 

  8. Sepulveda P, Binner JP (1999) J Ceram Soc Jpn 19:2059

    CAS  Google Scholar 

  9. Zhu S, Ding S, Xi H, Wang R (2005) Mater Lett 59:595

    Article  CAS  Google Scholar 

  10. She JH, Ohji T, Deng ZY (2002) J Am Ceram Soc 85:2125

    CAS  Article  Google Scholar 

  11. Ding S, Zeng Y, Jiang D (2006) J Inorg Mater 21:1397

    CAS  Google Scholar 

  12. Latella BA, Henkel L, Mehrtens EG (2006) J Mater Sci 41:423

    Article  CAS  Google Scholar 

  13. de Souza Rodrigues C, Ghavami K, Stroeven P (2006) J Mater Sci 41:6925

    Article  CAS  Google Scholar 

  14. Glass SJ, Green DJ (1999) J Am Ceram Soc 82:2745

    CAS  Article  Google Scholar 

  15. Innocentini M, Pandolfelli V (2001) J Am Ceram Soc 84:941

    CAS  Article  Google Scholar 

  16. Lukasiewicz SJ, Reed JS (1998) J Am Ceram Soc 71:1008

    Article  Google Scholar 

  17. Ohzawa Y, Nomura K, Sugiyama K (1998) Mater Sci Eng A255:33

    CAS  Google Scholar 

  18. Carman PC (1956) Flow of gases through porous media. Butterworths, London

    Google Scholar 

  19. Collins RE (1961) Flow of fluids through porous materials. Reinhold, New York

    Google Scholar 

  20. Innocentini M, Pardo A, Salvini V, Pandolfelli V (1999) Am Ceram Soc Bull 78:64

    CAS  Google Scholar 

  21. Ergun S (1952) Chem Eng Prog 48:89

    CAS  Google Scholar 

  22. Philipse AP, Schram HL (1991) J Am Ceram Soc 74:728

    Article  CAS  Google Scholar 

  23. Innocentini M, Pardo A, Salvini V, Pandolfelli V (2000) J Am Ceram Soc 83:1536

    CAS  Article  Google Scholar 

  24. Ding S, Zhu S, Zeng Y, Jiang D (2007) J Eur Ceram Soc 27:2095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support from the ‘‘Plan of Outstanding Talents’’ of Chinese Academy of Sciences. The comments of the reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Ding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ding, S., Zeng, YP. & Jiang, D. Gas permeability behavior of mullite-bonded porous silicon carbide ceramics. J Mater Sci 42, 7171–7175 (2007). https://doi.org/10.1007/s10853-007-1577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1577-y

Keywords

  • Porous Medium
  • Open Porosity
  • Porous Ceramic
  • Graphite Content
  • Bimodal Pore Size Distribution