Skip to main content
Log in

Particle distribution and interfacial reactions of Al–7%Si–10%B4C die casting composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum–boron carbide particle reinforced composite is an advanced material which can be used in applications such as neutron-shielding components, aircraft, and aerospace structures. In the microstructural characterization of an Al–7%Si–10%B4C die casting, attention is particularly focused on particle distribution and interface reaction products between B4C particles and the aluminum matrix. The quantitative analysis results show that, in a cross-section of the cast part, more particles concentrate in the center and fewer particles are present in the wall regions. Moreover, some particle segregation bands have been observed. The mechanisms of the particle migration are proposed to describe the phenomenon. However, the average particle fraction in any cross-section of the cast part is almost the same. A barrier layer consisting of several sublayers was detected on the surface of B4C particles. Using electron diffraction in selected areas, it is found that these sublayers are composed of Al3BC crystals, TiB2 crystals, Si crystals, and coarse stick-shaped TiB2 particles. In addition, it is observed that Si plays an important role in the formation of a dense barrier layer. The barrier layer can limit B4C decomposition and improve B4C stability in the aluminum melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen X-G (2006) In: Grupta N, Hunt WH (eds) Proceedings of solidification processing of metal matrix composites, TMS 2006, San Antonio, USA, March 2006, p 343

  2. Chen X-G (2005) In: Schlesinger ME (ed) EPD Congress 2005. TMS 2005, p 101

  3. Zhang Z, Chen X-G, Charette A (2006) In: Grupta N, Hunt WH (eds) Proceedings of solidification processing of metal matrix composites, TMS 2006, San Antonio, USA, March 2006, p 173

  4. Kennedy AR (2002) J Mater Sci 37:317. DOI: 10.1023/A:1013600328599

    Google Scholar 

  5. Lloyd DJ (1997) In: Mallick PK (ed) Composites engineering handbook. Marcel Dekker, Inc., p 631

  6. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. DOI: 10.1023/A:1018625402103

    Google Scholar 

  7. Pyzik AJ, Beaman DR (1995) J Am Ceram Soc 78:305

    Article  CAS  Google Scholar 

  8. Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) J Mater Process Technol 142:738

    Article  CAS  Google Scholar 

  9. Zhang Z, Chen X-G, Charette A, Ghomashchi R (2005) In: Martin J-P (ed) Proceedings of 44th annual conference of metallurgist of CIM, Calgary, Canada, August 2005, p 447

  10. Laukli H, Lohne O, Arnberg L (2005) In: Tiryakioglu M, Crepeau PN (eds) Proceedings of TMS 2005 – shape casting – The John Campbell symposium, San Francisco, USA, February 2005, p 263

  11. Sannes S, Westengen H (1998) In: Mordike BL, Kainer KU (eds) Proceedings of magnesium alloys and their application, Wolfsburg, Germany, April 1998, p 223

  12. Laukli H, Gourlay C, Dahle A, Lohne O (2005) Mater Sci Eng A 413–414:92

    Google Scholar 

  13. Gourlay CM, Laukli HI, Dahle AK (2004) Metall Mater Trans A 35A:2881

    Article  CAS  Google Scholar 

  14. Laukli H, Lohne O, Armberg L (2005) In: Tiryakioglu M, Crepeau PN (eds) Proceedings of shape casting – The John Campbell symposium, San Francisco, USA, February 2005, p 263

  15. Dahle AK, St John DH (1999) Acta Mater 47:31

    Article  CAS  Google Scholar 

  16. Rohatgi PK, Asthana R, Yarandi F (1989) In: Rohatgi P (ed) Proceedings of solidification of metal matrix composites, Indianapolis, pp 51–75

  17. Lin CB, Wu CL, Chiang CH (1999) J Mater Sci 34:2229. DOI: 10.1023/A:1004557103809

    Google Scholar 

  18. Lin CB, Ma CL, Chung YW (1998) J Mater Process Technol 48:236

    Article  Google Scholar 

  19. Lee TW, Lee CH (2000) J Mater Sci 35:4261. DOI: 10.1023/A:1004819931889

    Google Scholar 

  20. Ares A, Caram R, Schvezov C (2006) In: Gupta N, Hunt WH (eds) Proceedings of TMS 2006 – solidification process of metal matrix composites (Rohatgi Honorary Symposium), San Antonio, USA, March 2006, p 183

  21. Ferguson J, Kemblowski Z (1991) Applied fluid rheology. Elsevier Applied science, London, p 199

    Google Scholar 

  22. Powder Diffraction File No. 50-1470, and 35-0741 (2003) International Center for Diffraction Data, Newtown Square, PA, USA

  23. Powder Diffraction File No. 05-0565 (2003) International Center for Diffraction Data, Newtown Square, PA, USA

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Natural Sciences and Engineering Research Council of Canada (NSERC), Alcan Inc., Arvida Research and Development Centre (ARDC) and Centre Québécois de Recherche et de Développment de l’Aluminium (CQRDA). They would like to thank the Aluminum Technology Center (CTA) for the permission to use its high pressure die casting machine and die mould. They are also grateful to Dr. S. Nafisi, M. Bouchard, and G. Lemire of UQAC, P. Plamondon and J.-P. Masse of École Polytechnique de Montréal, and Dr. M. Choquette of Université Laval for their assistance in the microstructure examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Chen, XG. & Charette, A. Particle distribution and interfacial reactions of Al–7%Si–10%B4C die casting composite. J Mater Sci 42, 7354–7362 (2007). https://doi.org/10.1007/s10853-007-1554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1554-5

Keywords

Navigation