Skip to main content
Log in

Reactionary processes during mechanical treatment of mixtures of ZnO and MnO2. I. Formation of defects and solid solution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Kinetics of defects formation, reaction process and formation of solid solution in powder mixtures of ZnO and MnO2 induced by prolonged mechanical treatment (MT) have been investigated (X-ray, FTIR, EPR). At MT in zones of deformation-destruction the different defects ( \( {\text{V}}_{{\text{Zn}}}^ - :{\text{Zn}}_{\text{i}}^{\text{0}} \) (I), \( {\text{V}}_{{\text{Zn}}}^ - \) (II), and \( {\text{(V}}_{{\text{Zn}}}^ - {\text{)}}_{\text{2}}^ - \) (III) centers at all) are forming. The defects have various physical and chemical properties, and have different activation energies of annealing, Eact The part of these defects is responsible for the processes of hydration and carbonation of samples. In turn, the formation of defects is accompanied by development of various mechanothermical processes, which increase temperature of the sample, T MT, with the increasing of duration of MT, t MT. The increasing of t MT activates the reactionary processes: promotes a consecutive annealing the «low-temperature» defects having small values of Eact (I, II and III) and also leads to formation of Mn2+-doped Zn(OH)2. With the further increase of t MT, the process of MT is accompanied by an increasing of temperature of samples up to equilibrium, T eq and accumulation of “high-temperature” defects in the sample. As a result, in the sample the conditions for intensification of volumetric diffusion processes and formation of Mn2+-doped ZnO were created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta TK (1990) J Am Cer Soc 75:1817

    Article  Google Scholar 

  2. Furdyna JK (1988) . Diluted magnetic semiconductors. Academic, New York

  3. Bates CH, White WB, Roy R (1966) J Inorg Nucl Chem 28:397

    Article  CAS  Google Scholar 

  4. Mizokawa T, Nambu T, Fujimori A, Fukumura T, Kawasaki M (2002) Phys Rev B 65:085209

    Article  CAS  Google Scholar 

  5. Fukumura T, Jin Z, Ohtomo A, Koinuma H, Kawasaki M (1999) Appl Phys Lett 75:3366

    Article  CAS  Google Scholar 

  6. Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo YZ, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H (2002) Appl Phys Lett 78:3824

    Article  CAS  Google Scholar 

  7. Jung SW, An S-J, Yi G-C, Jung CU, Lee S-I, Cho S (2002) Appl Phys Lett 80:4561

    Article  CAS  Google Scholar 

  8. Jin Z-W, Yoo Y-Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M, Koinuma H (2003) Appl Phys Lett 83:39

    Article  CAS  Google Scholar 

  9. Kim YM, Yoon M, Park I-W, Lyou JH (2004) Sol St Comm 129:175

    Article  CAS  Google Scholar 

  10. Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RK, Schwartz DA, Gamelin DR (2004) J Am Cer Soc 126:9387

    CAS  Google Scholar 

  11. Minami T, Sato H, Nanto H, Takata S (1985) Jpn J Appl Phys 24:L781

    Article  Google Scholar 

  12. Zhou H, Hofmann DM, Hofstaetter A, Meyer B (2003) J Appl Phys 94:1965

    Article  CAS  Google Scholar 

  13. Han S-J, Jang T-H, Kim YB, Park B-G, Park J-H, Jeong YH (2003) Appl Phys Lett 83:920

    Article  CAS  Google Scholar 

  14. Kolesnik S, Dabrowski B, Mais J (2004) J Appl Phys 95:2582

    Article  CAS  Google Scholar 

  15. Kolesnik S, Dabrowski B (2004) J Appl Phys 96:5379

    Article  CAS  Google Scholar 

  16. Driessens FCM, Rieck GD (1966) J Inorg Nucl Chem 28:1593

    Article  CAS  Google Scholar 

  17. Klug HP, Alexander LE (1974) . X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. J Wiley & Sons, New York

    Google Scholar 

  18. Liu Y, Ren W, Zhang LY, Yao X (1999) Thin Solid Films 353:124

    Article  CAS  Google Scholar 

  19. Kakazey MG, Sreckovic TV, Ristic MM (1997) J Mater Sci 32:4619, DOI 10.1023/A:1018689721667

  20. Kakazey MG, Vlasova M, Dominguez-Patiño M, Dominguez-Patiño G, Gonzalez-Rodriguez G, Salazar-Hernandez B (2002) J Appl Phys 92:5566

    Article  CAS  Google Scholar 

  21. Schallenberger B, Hausmann A (1976) Z Physik B23:177

    Google Scholar 

  22. Galland D, Herve A (1974) Solid State Comm 14:953

    Article  CAS  Google Scholar 

  23. Zhou H, Alves H, Hofmann DM, Kriegseis W, Meyer BK, Kachmarchyk G, Hoffmann A (2003) J Appl Phys 94:1965

    Article  CAS  Google Scholar 

  24. Hausmann A, Huppertz H (1968) J Phys Chem Sol 29:1369

    Article  CAS  Google Scholar 

  25. Kliava J (1988) EPR spectroscopy of disordered solids. Zinatne, Riga

    Google Scholar 

  26. Vlasova MV, Kakazey NG, Kostic P, Milosevic O, Uskokovic D (1985) J Mater Sci 20:1660, DOI 10.1007/BF00555269

    Google Scholar 

  27. Nakagawa M, Mitsudo H (1986) Surf Sci 175:157

    Article  CAS  Google Scholar 

  28. Piechonka WA, Petsch HE, Mclay AB (1961) Canad J Phys 39:145

    Google Scholar 

  29. Berger R, Kliava J, Yahiaoui E-M, Bissey J-C, Zinsou PK, Beziade P (1995) J Non-Cryst Sol 180:151

    Article  CAS  Google Scholar 

  30. Heinike G (1984) Ttribochemistry. Akademie-Verlag, Berlin

    Google Scholar 

  31. Politov AA, Zakrevsky VA, Izvestia SO (1988) AN SSSR 5:43

    Google Scholar 

  32. Kakazey M, Vlasova M, Dominguez-Patiño M, Kliava J, Tomila T (2006) J Am Cer Soc 89:1458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Kakazey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakazey, M., Vlasova, M., Dominguez-Patiño, M. et al. Reactionary processes during mechanical treatment of mixtures of ZnO and MnO2. I. Formation of defects and solid solution. J Mater Sci 42, 7116–7122 (2007). https://doi.org/10.1007/s10853-007-1550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1550-9

Keywords

Navigation