Skip to main content
Log in

Solid-state synthesis of nano-sized BaTiO3 powder with high tetragonality

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A solid-state reaction method was used to synthesize nano-sized, Ca-doped BaTiO3 powder with high tetragonality (=c/a) in order to increase the volumetric efficiency of multilayer ceramic capacitors (MLCCs). The reaction temperatures for three different starting material combinations were examined by thermogravimetric/differential thermal analysis (TG/DTA). Nano-sized starting materials and the mechanochemical activation of the needle-shaped BaCO3 via high-energy milling were effective in decreasing the reaction temperature. In addition, the results showed that the tetragonality of fine Ca-doped BaTiO3 could be enhanced by 2-step heat treatment, consisting of holding at 800 °C for 1 h followed by consecutive heating to the target temperature, without any significant grain growth than that of the conventional 1-step calcination. The synthesized particles heat-treated at 950 and 1,000 °C by 2-step heat treatment were confirmed by characterization to have an average size of 128 and 212 nm, and a tetragonality of 1.0097 and 1.0105, respectively, which are higher tetragonality values than those previously reported for similar sized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoon DH, Lee BI (2002) J Ceram Proc Res 3:41

    Google Scholar 

  2. Merz WJ (1949) Phys Rev 76:1221

    Article  CAS  Google Scholar 

  3. Kwon SW, Yoon DH (2006) Ceram Int (in press)

  4. Sakabe Y, Wada N, Hiramatsu T, Tonogaki T (2002) Jpn J Appl Phys 41:6922

    Article  CAS  Google Scholar 

  5. Wada S, Yasuno H, Hoshina T, Nam SM, Kakemoto H, Tsurumi T (2003) Jpn J Appl Phys 42:6188

    Article  CAS  Google Scholar 

  6. Kishi H, Mizuno Y, Chazono H (2003) Jpn J Appl Phys 42:1

    Article  CAS  Google Scholar 

  7. Sakabe Y (2000) In: Jean JH, Gupta TK, Nair KM, Niwa K (eds) Ceramic transactions, vol 97. American Ceramic Society, OH, p 1

    Google Scholar 

  8. Sakabe Y, Wada N, Hamaji Y (1998) J Korean Phys Soc 32:S260

    CAS  Google Scholar 

  9. Uchino K, Sadanaga E, Hirose T (1989) J Am Ceram Soc 72:1555

    Article  CAS  Google Scholar 

  10. Begg BD, Rvance E, Nowotny J (1994) J Am Ceram Soc 77:3186

    Article  CAS  Google Scholar 

  11. Vivekanandan R, Kutty TRN (1989) Powder Tech 57:181

    Article  CAS  Google Scholar 

  12. Arlt G, Hennings D, With GD (1985) J Appl Phys 58:1619

    Article  CAS  Google Scholar 

  13. Hennings DFK, Schreinemacher BS, Schreinemacher H (2001) J Am Ceram Soc 84:2777

    Article  CAS  Google Scholar 

  14. Kong LB, Ma J, Huang H, Zhan RFG, Que WX (2002) J Alloys Compos 337:226

    Article  CAS  Google Scholar 

  15. Brzozowski E, Castro MS (2003) Thermochim Acta 398:123

    Article  CAS  Google Scholar 

  16. Gomez-Yanez C, Benitez C, Balmori-Ramirez H (2000) Ceram Int 26:271

    Article  CAS  Google Scholar 

  17. Buscaglia MT, Bassoli M, Buscaglia V (2005) J Am Ceram Soc 88:2374

    Article  CAS  Google Scholar 

  18. Berbenni V, Marini A, Bruni G (2001) Thermochim Acta 374:151

    Article  CAS  Google Scholar 

  19. Ando C, Yanagawa R, Chazono H, Kishi H, Senna M (2004) J Mater Res 19:3592

    Article  CAS  Google Scholar 

  20. Brzozowski E, Castro MS (2000) J Eur Ceram Soc 20:2347

    Article  CAS  Google Scholar 

  21. Kwon SW, Yoon DH (2006) J Eur Ceram Soc 27:247

    Article  CAS  Google Scholar 

  22. Lotnyk A, Senz S, Hesse D (2006) Solid State Ionics 177:429

    Article  CAS  Google Scholar 

  23. Beauger A, Mutin JC, Niepce JC (1983) J Mater Sci 18:3543, DOI: 10.1007/BF00540726

  24. O’neil MJ, Smith A, Heckelman PE, Obenchain JR, Gallipeau JAR, D’arecca MA, Budavari S (2001) In The Merck Index. MERCK & CO, Inc, NJ, p 9549

  25. Levin EM, Mcmurdie HF (1975) In: Reser MK (ed) Phase diagrams for ceramists. American Ceramic Society, Westerville, OH, p 4258

    Google Scholar 

  26. Felgner KH, Muller T, Langhammer HY, Abicht HP (2004) Mater Lett 58:1943

    Article  CAS  Google Scholar 

  27. Shaikh AS, Vest GM (1986) J Am Ceram Soc 69:682

    Article  CAS  Google Scholar 

  28. Maison W, Kleeberg R, Heimann RB, Phanichphant S (2003) J Eur Ceram Soc 23:127

    Article  CAS  Google Scholar 

  29. Chen KY, Chen YW (2004) Powder Tech 41:69

    Article  CAS  Google Scholar 

  30. Tsurumi T, Sekine T, Kakemoto H, Hoshina T, Nam SM, Yasuno H, Wada S (2006) J Am Ceram Soc 89(4s):1337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Pohang National Center for Nanomaterials Technology. The authors would like to thank Dr. K. H. Hur, Mr. H. S. Jung and Mr. D. S. Lee at Samsung Electro-Mechanics Co. for their considerable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, SS., Yoon, DH. Solid-state synthesis of nano-sized BaTiO3 powder with high tetragonality. J Mater Sci 42, 7093–7099 (2007). https://doi.org/10.1007/s10853-007-1537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1537-6

Keywords

Navigation