Skip to main content
Log in

Characterizing the surface properties of carbon nanotubes by inverse gas chromatography

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inverse gas chromatography (IGC) was used to characterize the surface properties of pristine multi-walled carbon nanotubes (MWNTs), as well as the poly(acrylic acid) sidewall covalently functionalized MWNTs (PAA-g-MWNTs) and hydroxyl group directly grafted MWNTs (MWNTols). The dispersive component of the surface energy ( \( \gamma _S^D \)) and the acid/base character of these samples’ surfaces were estimated by the retention time with different non-polar and polar probes at infinite dilution region. The specific free energy (ΔG AB) and the enthalpy (ΔH AB) of adsorption corresponding to acid–base surface interactions were determined. By correlating ΔH AB with the donor and acceptor numbers of the probes, the acidic (K A) and the basic K D parameters of the samples’ were calculated. The results show that chemical modification successfully reduces the dispersive component of the surface energy of MWNTs. Furthermore, MWNTs grafted with hydroxyl groups exhibit a more basic character, while MWNTs grafted with poly(acrylic acid) show a more acidic character. Overall, IGC provides useful complementary information on the changes resulted from the chemical modifications of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 56:354

    Google Scholar 

  2. Zhang XF, Sreekumar TV, Liu T et al (2004) J Phys Chem B 108:16435

  3. Terrones M (2003) Annu Rev Mater Res 33:419

    Article  CAS  Google Scholar 

  4. Rao CNR, Satishkumar BC, Govindaraj A et al (2001) Chemphyschem 2:78

    Article  CAS  Google Scholar 

  5. Besancon BM, Green PF (2004) Macromol 38:110

    Article  CAS  Google Scholar 

  6. Li SP, Qin YJ, Shi JH et al (2005) Chem Mater 17:130

    Article  CAS  Google Scholar 

  7. Weisenberger MC, Grulke EA, Jacques D et al (2003) J Nanosci Nanotech 3:535

    Article  CAS  Google Scholar 

  8. Yang JW, Hu JH, Wang CC (2004) Macromol Mater Eng 289:828

    Article  CAS  Google Scholar 

  9. Zhu J, Peng HQ, Macias FR et al (2004) Adv Funct Mater 14:643

    Article  CAS  Google Scholar 

  10. Blond D, Barron V, Ruether M et al (2006) Adv Funct Mater 16:1608

    Article  CAS  Google Scholar 

  11. Wang SR, Liang ZY, Liu T et al (2006) Nanotechnology 17:1551

    Article  CAS  Google Scholar 

  12. Sun YP, Fu KF, Y Lin, Huang WJ (2002) Acc Chem Res 35:1096

    Article  CAS  Google Scholar 

  13. Zhang L, Kiny VU, Peng HQ et al (2004) Chem Mater 16:2055

    Article  CAS  Google Scholar 

  14. Liu AH, Honma I, Ichihara M et al (2006) Nanotechnology 17:2845

    Article  CAS  Google Scholar 

  15. Sun CH, Berg JC (2003) Adv Colloid Interface Sci 105:151

    Article  CAS  Google Scholar 

  16. Price GJ, Ansari DM (2004) Poly Inter 53:430

    Article  CAS  Google Scholar 

  17. Montes -Moran MA, Paredes JI, Martinez-Alonso A et al (2002) Macromolecules 35:5085

    Article  CAS  Google Scholar 

  18. Askin A, Yazici DT (2005) Chromatographia 61:625

    Article  CAS  Google Scholar 

  19. Pfohl O, Dohrn R (2004) Fluid Phase Equilibr 217:189

    Article  CAS  Google Scholar 

  20. Papirer E, Brendle E, Ozil F, Balard H (1999) Carbon 37:1265

    Article  CAS  Google Scholar 

  21. Schultz J, Lavielle L, Martin CJ (1987) Adhesion 23:45

    CAS  Google Scholar 

  22. Conder JR, Young CL (1979) Physicochemical measurement by gas chromatography. Wiley-Interscience, New York

    Google Scholar 

  23. Grob RL (ed) (1995) Modern practice of gas chromatography. Wiley-Interscience, New York

  24. Liu LQ, Zhang SA, Hu TJ et al (2002) Chem Phys Lett 359:191

    Article  CAS  Google Scholar 

  25. Yang D, Hu JH, Wang CC (2006) Carbon 44:316

    Google Scholar 

  26. Gao C, Vo CD, Jin YZ, Li WW, Armes SP (2005) Macromolecules 38:8634

    Article  CAS  Google Scholar 

  27. Kamdem DP, Bose SK, Luner P (1993) Langmuir 9:3039

    Article  CAS  Google Scholar 

  28. Panzer U, Schreiber HP (1992) Macromolecules 25:3633

    Article  CAS  Google Scholar 

  29. Bailey RA, Persaud KC (1988) Anal Chim Acta 363:147

    Article  Google Scholar 

  30. Planinsek O, Buckton G (2003) J Pharmcaol Sci 92:1286

    Article  CAS  Google Scholar 

  31. J Schultz K Tsutsumi, Donnent JB (1977) J Colloid Interface Sci 59:272

    Article  Google Scholar 

  32. M Shui (2003) Appl Surf Sci 220:359

    Article  CAS  Google Scholar 

  33. Packham DE (1992) Handbook of adhesion. Longman, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (Grant No.20374012), National Science Foundation for Distinguished Yong Scholars of China (5025310) and STCSM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changchun Wang or Qiangguo Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Yang, D., Xu, P. et al. Characterizing the surface properties of carbon nanotubes by inverse gas chromatography. J Mater Sci 42, 7069–7075 (2007). https://doi.org/10.1007/s10853-007-1536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1536-7

Keywords

Navigation